首页> 外文会议>International conference on mathematics, computational methods reactor physics;MC 2009 >AN EXTENSION OF THE MULTIGROUP ANALYTIC NODAL METHOD (MANM) TO PROBLEMS IN HEXAGONAL-Z GEOMETRY
【24h】

AN EXTENSION OF THE MULTIGROUP ANALYTIC NODAL METHOD (MANM) TO PROBLEMS IN HEXAGONAL-Z GEOMETRY

机译:六面体Z形几何问题的多重群分析节点法(MANM)的扩展

获取原文

摘要

There is a significant number of reactor designs where the fuel assemblies are arranged in hexagonal lattices. The mostly widely used methods for global reactor calculations are the transverse-integrated nodal methods. They were primarily developed in Cartesian geometry. In the mid 90's the conformal mapping was used to provide a sound mathematical basis for the extension of these methods to hexagonal geometry. This technique was widely accepted and applied in several production nodal codes employing semi-analytic, analytic and polynomial transverse-integrated nodal methods. In this paper we develop the full multigroup analytic nodal method for hexagonal-z geometry and incorporate it into the MGRAC code. Like the methods cited above, we also employ the conformal mapping of a homogeneous hexagon into an inhomogeneous rectangle in order to establish the auxiliary one dimensional diffusion equations that are used to derive nodal coupling relations. The multigroup one-dimensional equations are solved analytically so that the only approximations that we make are in the transverse leakage representation and in the treatment of the inhomogeneity. We calculate the conformal mapping scale function using a numerically exact calculation based on analytical expressions. The formulation of the spatially discretized diffusion equation is such that a variety of iteration solution strategies can be used in MGRAC. These range from schemes in which the transverse leakage and the geometric source are updated at outer iterations (where eigenvalues are updated) to schemes where theses terms are updated only at feedback iterations (where nodal coupling coefficients are updated). Outer (eigenvalue) iterations are either fission-source driven or (transverse) leakage-source driven. A three color (RGB) Gauss-Seidel scheme is used for the inner (flux) iterations. Numerical results show good accuracy in the prediction of eigenvalues (errors of the order of 50 pcm) and assembly powers (errors of the order of 1 - 2%).
机译:存在大量的反应堆设计,其中燃料组件以六边形格子排列。用于整体反应堆计算的最广泛使用的方法是横向积分节点法。它们主要是在笛卡尔几何中开发的。在90年代中期,共形映射用于为将这些方法扩展到六角形几何体提供可靠的数学基础。该技术已被广泛接受,并应用于采用半解析,解析和多项式横向积分节点法的几种生产节点代码。在本文中,我们开发了用于六边形z几何的完整多组分析节点方法,并将其合并到MGRAC代码中。像上面引用的方法一样,我们还采用了均匀六边形到不均匀矩形的共形映射,以便建立用于导出节点耦合关系的辅助一维扩散方程。通过解析求解多组一维方程,以便我们得出的唯一近似值是横向泄漏表示形式和不均匀性的处理。我们使用基于解析表达式的精确数值计算来计算共形映射比例函数。空间离散扩散方程的表述使得在MGRAC中可以使用多种迭代求解策略。这些范围包括从横向泄漏和几何源在外部迭代(特征值被更新)更新的方案到仅在反馈迭代(节点耦合系数被更新)更新这些项的方案。外部(特征值)迭代由裂变源驱动或(横向)泄漏源驱动。三色(RGB)Gauss-Seidel方案用于内部(通量)迭代。数值结果表明,本征值(误差为50 pcm的量级)和装配功率(误差为1-2%的量级)的预测具有良好的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号