首页> 外文会议>International astronautical congress;IAC 2008 >A FOURTH-ORDER ANALYTICAL THEORY FOR ORBIT PREDICTIONS WITH AIR DRAG IN TERMS OF KS UNIFORMLY REGULAR CANONICAL ELEMENTS
【24h】

A FOURTH-ORDER ANALYTICAL THEORY FOR ORBIT PREDICTIONS WITH AIR DRAG IN TERMS OF KS UNIFORMLY REGULAR CANONICAL ELEMENTS

机译:KS统一规则正则元素项中带风阻的轨道预测的四阶分析理论

获取原文

摘要

An accurate orbit prediction of the Earth's satellites is an important requirement for mission planning, satellite geodesy, spacecraft navigation, re-entry and orbital lifetime estimates. It has become necessary to use extremely complex force models to match with the present operational requirements and observational techniques. The problem becomes all the more complicated in the near-Earth environment due to the fact that the satellite is influenced by the non-spherical effects of the Earth's gravitational field as well as the dissipative effects of the Earth's atmosphere. The effects of the atmosphere are difficult to determine since the atmospheric density, and hence the drag undergoes large modeled fluctuations. Though the accurate ephemeris of a near-Earth satellite can be generated by the numerical integration methods with respect to a complex force model, the analytical solutions, though difficult to obtain for complex force models and limited to relatively simple models, represent a manifold of solutions for a large domain of initial conditions and find indispensable application to mission planning and qualitative analysis.The method of the KS total-energy element equations [1] is a powerful method for numerical solution with respect to different type of perturbing forces. These equations were used systematically by the second author to generate a number of non-singular analytical solutions for low and high eccentricity orbits with air drag perturbation, by keeping the density scale height constant. Using a particular canonical form of the KS equations of motion known as uniformly regular KS canonical equations, where all the 10 canonical elements are constant in the unperturbed two-body problem, the authors have developed third-order non-singular analytical solutions for low eccentricity orbits with air drag using spherical, oblate and oblate diurnally varying atmospheric models with constant density scale height. [2, 3, 4]. Also, the authors developed fourth-order non-singular analytical theories for orbit predictions for low and high eccentricity orbits in terms of uniformly regular KS canonical elements and KS elements, respectively, in an oblate atmosphere with scale height dependent on altitude [5].In this paper, we develop a new non-singular analytical theory for orbit predictions for low eccentricity orbits with oblate diurnally varying atmosphere up to fourth-order terms in eccentricity and c (oblateness parameter) and with variation of scale height with altitude. The analytical solution will be compared with the numerically integrated values as well as with the extended fourth-order theory of Swinerd Boulton [6].
机译:精确地预测地球卫星的轨道是任务计划,卫星大地测量,航天器导航,再入和轨道寿命估算的重要要求。有必要使用极其复杂的力模型来匹配当前的操作要求和观测技术。由于卫星受地球引力场的非球形效应以及地球大气的耗散效应影响,因此在近地环境中,问题变得更加复杂。由于大气密度,因此很难确定大气的影响,因此阻力会经历较大的模型波动。尽管可以通过关于复杂力模型的数值积分方法来生成近地卫星的准确星历表,但是解析解决方案尽管对于复杂力模型来说很难获得并且仅限于相对简单的模型,但却代表了多种解决方案适用于广泛的初始条件,并在任务计划和定性分析中找到必不可少的应用。 KS总能量元素方程[1]的方法是一种针对不同类型的微扰力进行数值求解的有力方法。第二作者系统地使用了这些方程,以通过使密度标尺高度保持恒定,生成了针对具有空气阻力扰动的低偏心率轨道和高偏心率轨道的许多非奇异解析解。使用被称为统一规则KS正则方程的KS运动方程的特定正则形式,其中所有10个正则元素在无扰动的双体问题中都是恒定的,作者开发了用于低偏心率的三阶非奇异解析解使用具有恒定密度标高的球形,扁圆形和扁圆形的昼夜变化的大气模型,通过空气阻力使轨道绕动。 [2、3、4]。此外,作者在扁圆的大气中,分别以均匀规则的KS正则元素和KS元素开发了用于低偏心率轨道和高偏心率轨道的四阶非奇异分析理论[5]。 在本文中,我们开发了一种新的非奇异分析理论来预测低偏心率轨道,该低偏心率轨道的扁率在每天变化的大气中变化,直到偏心率和c(扁率参数)达到四阶,并且标尺高度随高度变化。解析解将与数值积分值以及Swinerd Boulton的扩展四阶理论进行比较[6]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号