首页> 外文会议>International astronautical congress >A FOURTH-ORDER ANALYTICAL THEORY FOR ORBIT PREDICTIONS WITH AIR DRAG IN TERMS OF KS UNIFORMLY REGULAR CANONICAL ELEMENTS
【24h】

A FOURTH-ORDER ANALYTICAL THEORY FOR ORBIT PREDICTIONS WITH AIR DRAG IN TERMS OF KS UNIFORMLY REGULAR CANONICAL ELEMENTS

机译:用于轨道预测的第四阶分析理论,随着KS均匀普通的规范元素

获取原文

摘要

An accurate orbit prediction of the Earth's satellites is an important requirement for mission planning, satellite geodesy, spacecraft navigation, re-entry and orbital lifetime estimates. It has become necessary to use extremely complex force models to match with the present operational requirements and observational techniques. The problem becomes all the more complicated in the near-Earth environment due to the fact that the satellite is influenced by the non-spherical effects of the Earth's gravitational field as well as the dissipative effects of the Earth's atmosphere. The effects of the atmosphere are difficult to determine since the atmospheric density, and hence the drag undergoes large modeled fluctuations. Though the accurate ephemeris of a near-Earth satellite can be generated by the numerical integration methods with respect to a complex force model, the analytical solutions, though difficult to obtain for complex force models and limited to relatively simple models, represent a manifold of solutions for a large domain of initial conditions and find indispensable application to mission planning and qualitative analysis. The method of the KS total-energy element equations [1] is a powerful method for numerical solution with respect to different type of perturbing forces. These equations were used systematically by the second author to generate a number of non-singular analytical solutions for low and high eccentricity orbits with air drag perturbation, by keeping the density scale height constant. Using a particular canonical form of the KS equations of motion known as uniformly regular KS canonical equations, where all the 10 canonical elements are constant in the unperturbed two-body problem, the authors have developed third-order non-singular analytical solutions for low eccentricity orbits with air drag using spherical, oblate and oblate diurnally varying atmospheric models with constant density scale height. [2, 3, 4]. Also, the authors developed fourth-order non-singular analytical theories for orbit predictions for low and high eccentricity orbits in terms of uniformly regular KS canonical elements and KS elements, respectively, in an oblate atmosphere with scale height dependent on altitude [5]. In this paper, we develop a new non-singular analytical theory for orbit predictions for low eccentricity orbits with oblate diurnally varying atmosphere up to fourth-order terms in eccentricity and c (oblateness parameter) and with variation of scale height with altitude. The analytical solution will be compared with the numerically integrated values as well as with the extended fourth-order theory of Swinerd Boulton [6].
机译:地球卫星的准确轨道预测是特派团规划,卫星大地,航天器导航,重新进入和轨道寿命估计的重要要求。有必要使用极其复杂的力模型来与目前的操作要求和观察技术相匹配。由于卫星受到地球的引力场的非球面影响以及地球大气的耗散效果的影响,问题变得更加复杂。由于大气密度,大气的效果难以确定,因此拖动经历大的模型波动。虽然可以通过关于复杂力模型的数值积分方法来产生近地球卫星的准确星镜,但是分析解决方案,虽然难以获得复杂的力模型并限于相对简单的模型,但代表了解决方案的歧管对于初始条件的大领域,并找到特派团规划和定性分析的必不可少的应用。 KS总能量元件方程的方法[1]是关于不同类型的扰动力的数值解决方案的强大方法。通过保持密度尺度高度恒定,第二作者系统地由第二作者系统地系统地用于产生许多具有空气阻塞扰动的低和高偏心轨道的非单数分析解决方案。使用称为均匀常规ks规范方程的ks方程的特定规范形式的ks方程,其中所有10个规范元素在不受干扰的双体问题中是恒定的,所以作者已经为低偏心率开发了三阶非奇异分析解决方案使用球形,扁平的空气拖动的轨道和恒定密度尺度高度的圆形变化的大气模型。 [2,3,4]。此外,作者在均匀普通的KS规范元件和KS元素中,在均匀的大气中,为低偏心轨道的轨道预测产生了四阶非单数分析理论,其均匀普通的速度,在卧高的尺寸高度依赖于高度[5]。在本文中,我们开发了一种新的非奇异分析理论,用于低偏心轨道的轨道预测,其具有偏心的偏心和C(灯泡参数)中的四阶术语,以及具有高度的规模高度的变化。分析解决方案将与数值集成的值进行比较,以及Swinerd Boulton的延长的第四阶理论[6]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号