首页> 外文会议>International Mechanical Engineering Congress and Exposition 2007 >ULTRA-SENSITIVE FLUIDIC SENSORS BY INTEGRATING FLUIDIC CIRCUITS AND MOSFETS
【24h】

ULTRA-SENSITIVE FLUIDIC SENSORS BY INTEGRATING FLUIDIC CIRCUITS AND MOSFETS

机译:通过集成流体电路和MOSFET的超灵敏流体传感器

获取原文

摘要

Nanofluidic sensors have been developed over the past decade and demonstrated the capability of sensing single DNA molecules. One important and promising class of nanofluidic devices detects single molecules by inserting a nanopore or nanochannel between two fluid cells and inducing an ionic current by applying an electric bias across the nanopore or nanochannel. When molecules are translocated through the nanoporeanochannel, a modulation of the baseline ionic current can be observed. In this scheme, the ionic current modulation is approximately the same as the channel resistance modulation, requiring the channel size to be comparable to the molecules to be detected. Here we report on a new sensing scheme to detect the translocation of particles through a fluidic channel, which amplifies the resistance modulation by up to 75 times. In this scheme, the device connects the gate of a MOSFET with a fluidic circuit and monitors the modulation of MOSFET's drain current to detect particles. We demonstrate that amplification can be achieved from both the fluidic circuit and the MOSFET. For a 9.86 urn diameter polystyrene bead that occupies 0.7% of the total volume of the sensing channel, results show that the drain current of the MOSFET is blocked by 30-46%. We also demonstrate the capability of this device to distinguish particles with similar sizes but different surface charges as they translocate through the sensing channel. More interestingly, the experiments with CD4+ T lymphocyte cells show another modulation pattern: the MOSFET's drain current is first enhanced and then blocked, which is not fully understood and needs further investigation. Although at this moment the device is based on microchannels and the particles detected are micron-size beads and cells, we expect that the same scheme can be applied to nanofluidic circuits for single molecule detection.
机译:纳米流体传感器在过去的十年中得到了发展,并展示了检测单个DNA分子的能力。一类重要且有希望的纳米流体装置可通过在两个流体细胞之间插入纳米孔或纳米通道,并通过在纳米孔或纳米通道上施加电偏压来感应离子电流来检测单个分子。当分子通过纳米孔/纳米通道移位时,可以观察到基线离子电流的调节。在此方案中,离子电流调制与通道电阻调制大致相同,要求通道大小与要检测的分子相当。在这里,我们报告了一种新的检测方案,该方案可检测通过流体通道的颗粒移位,从而将电阻调制放大多达75倍。在该方案中,该器件将MOSFET的栅极与流体电路相连,并监视MOSFET漏极电流的调制以检测颗粒。我们证明了可以通过流体电路和MOSFET来实现放大。对于直径为9.86微米的聚苯乙烯珠,其占感测通道总体积的0.7%,结果表明MOSFET的漏极电流被30-46%阻挡。我们还展示了该设备区分大小相似但表面电荷不同的颗粒的能力,因为这些颗粒通过传感通道移位。更有趣的是,用CD4 + T淋巴细胞进行的实验显示了另一种调制方式:MOSFET的漏极电流首先增强,然后被阻断,这一点尚未完全理解,需要进一步研究。尽管目前该设备基于微通道,并且检测到的颗粒是微米大小的珠子和细胞,但我们希望可以将相同的方案应用于纳米流体电路中进行单分子检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号