首页> 外文会议>Computational Mechanics >Second order fractional step schemes for the incompressible Navier-Stokes equations. Inherent pressure stability and pressure stabilization
【24h】

Second order fractional step schemes for the incompressible Navier-Stokes equations. Inherent pressure stability and pressure stabilization

机译:不可压缩的Navier-Stokes方程的二阶分数步方案。固有的压力稳定性和压力稳定性

获取原文

摘要

Fractional step methods for the time integration of the incompressible Navier-Stokes equations are very popular for their low computational cost. Moreover, very often it has been considered that they allow us to use equal velocity-pressure interpolation, thus avoiding the need to satisfy the classical inf-sup condition. In this paper we analyze this point for two families of second order fractional step methods. The first one is the classical pressure splitting (PS), in which the pressure is treated explicitly in the momentum equation and then it is updated, whereas the second one is the more recent velocity splitting (VS), which consists of treating explicitly the velocity in the momentum equation and updating it once the pressure and a fractional velocity are computed. We show that these two methods provide some pressure stability independent of the choice of the velocity and pressure interpolation. For the PS scheme, whose analysis is fully detailed, this stability is enough for first order schemes, but very poor for the second order scheme we consider. Contrary, it is possible to design VS methods that provide higher pressure stability. In fact, if the time step is properly chosen (equal to the critical time step of the forward Euler time integration), the pressure stability obtained is optimal, although in this case the time accuracy is strongly coupled with the space accuracy. We discuss all these details and also present a pressure stabilization technique that allows us to obtain the proper pressure stability without relying on the time step size.
机译:不可压缩的Navier-Stokes方程的时间积分的分数步方法因其计算成本低而非常受欢迎。而且,人们经常认为它们允许我们使用等速-压力插值,从而避免了需要满足经典inf-sup条件的情况。在本文中,我们针对两个二阶分数步方法系列分析了这一点。第一个是经典的压力分裂(PS),其中在动量方程中显式地处理压力,然后对其进行更新,而第二个是最新的速度分裂(VS),其包括显式地处理速度在动量方程中,一旦计算出压力和分数速度,就对其进行更新。我们表明,这两种方法提供了一些压力稳定性,而与速度和压力插值的选择无关。对于PS方案,其分析已详细介绍,这种稳定性对于一阶方案已经足够了,但对于我们考虑的二阶方案来说却很差。相反,可以设计提供更高压力稳定性的VS方法。实际上,如果正确选择了时间步长(等于正向Euler时间积分的关键时间步长),则获得的压力稳定性是最佳的,尽管在这种情况下,时间精度与空间精度密切相关。我们讨论了所有这些细节,还提出了一种压力稳定技术,使我们无需依赖时间步长即可获得适当的压力稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号