首页> 外文会议>Conference on metrology, inspection, and process control for microlithography >Impact of optical absorption on process control for sub-0.15-nm device patterning using 193-nm lithography
【24h】

Impact of optical absorption on process control for sub-0.15-nm device patterning using 193-nm lithography

机译:使用193 nm光刻技术对0.15 nm以下的器件构图进行光吸收对工艺控制的影响

获取原文

摘要

Abstract: The significant optical absorption of most currently available commercial single layer 193 nm resists, even at a coating thickness of 0.4 micrometer, implies increased sensitivity to process control fluctuations of the kind that negatively impact critical dimension (CD) uniformity, process latitude, resist sidewall profile, and line edge roughness. These problems, although less severe on reflective substrates, are particularly acute on wafers with bottom anti-reflection coatings (BARCs), which are useful in CD control. With different intensity of light reaching different levels in the resist film on a BARC, a gradient is thus established in the extent of the chemical amplification reactions on which semiconductor lithography is based. The result is the familiar sloped sidewall profile and poor CD uniformity after the resist is developed. Further, with most of the photoacid generators and the polymer resins in the 193 nm resists having very low quantum efficiencies and significant absorption at 193 nm, respectively, most of the absorbed light in the resist is used up in energy dissipative processes, instead of in generating photoacids which catalyze the chemical amplification chemistry of these resists. One approach to overcome this absorption problem is to use significantly thinner resist films, but etch considerations preclude such option as these materials do not have very good etch stability. The purpose of this paper is to quantitatively assess the impact of absorption on the process control of sub- 0.15 micrometer features patterned on a full field ASML 193 nm scanner, interfaced to a TEL MARK-8 track. Optical properties of different resist films/BARC stack combinations are characterized by UV spectroscopic ellipsometry and broad band spectrometry, and sidewall profiling is done by atomic force microscopy. !2
机译:摘要:即使在涂层厚度为0.4微米的情况下,即使是在涂层厚度为0.4微米的情况下,大多数当前可用的商用单层193 nm抗蚀剂也具有显着的光吸收性能,这意味着对过程控制波动的敏感性增加,这种波动会对临界尺寸(CD)的均匀性,加工范围,抗蚀剂产生负面影响侧壁轮廓和线边缘粗糙度。这些问题虽然在反射基板上不那么严重,但在具有底部抗反射涂层(BARC)的晶圆上尤为严重,这些涂层可用于CD控制。通过在BARC上的抗蚀剂膜中使不同强度的光达到不同水平,从而在基于半导体光刻的化学放大反应的范围内建立了梯度。结果是在抗蚀剂显影后熟悉的倾斜侧壁轮廓和差的CD均匀性。此外,由于193 nm抗蚀剂中的大多数光致产酸剂和聚合物树脂分别具有非常低的量子效率和在193 nm处的显着吸收,因此抗蚀剂中的大部分吸收光在能量耗散过程中被消耗掉,而不是在光吸收过程中消耗掉。产生光酸,催化这些抗蚀剂的化学放大化学反应。解决该吸收问题的一种方法是使用明显更薄的抗蚀剂膜,但是由于这些材料的蚀刻稳定性不高,因此蚀刻的考虑排除了这种选择。本文的目的是定量评估吸收对在全场ASML 193 nm扫描仪上形成图案的0.15微米以下特征的过程控制的影响,该特征与TEL MARK-8轨道连接。不同的抗蚀剂膜/ BARC叠层组合的光学特性通过紫外光谱椭圆偏振和宽带光谱表征,而侧壁轮廓分析则通过原子力显微镜进行。 !2

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号