首页> 外文会议>Conference on microelectronic device technology >Hot-carrier effects in sub-100-nm gate-length N-MOSFETs with thermal and nitrided oxide thickness down to 1.3 nm
【24h】

Hot-carrier effects in sub-100-nm gate-length N-MOSFETs with thermal and nitrided oxide thickness down to 1.3 nm

机译:栅极厚度小于100nm的N-MOSFET的热载流子效应,热和氮化氧化物的厚度低至1.3nm

获取原文
获取外文期刊封面目录资料

摘要

Abstract: Device degradation due to hot-carrier injection in sub-100 nm gate length devices has been investigated. 90 nm gate length (CD SEM) N-MOSFETs with 2.2 nm nitrous oxide (Idsat equals 735 uA/micrometer, Idoff equals 1.1 nA/micrometer @Vdd equals 1.5 V) are electrically stressed and measured up to 200,000 seconds. Both Vg@Isubmax and Vg equals Vd stressing conditions at 1.8, 2.0, 2.2 V, 2.5 V and 2.8 V are performed. Contrary to traditional understanding, Vg equals Vd, i.e. channel hot carrier injection CHCI), stress causes more idlin, Idsat, Vt and Gm degradations. Similar trends are observed in NMOS devices fabricated with 1.6 nm thermal and nitrous oxides as well as 1.3 nm nitric oxides. CHCI being a worst case DC hot carrier stress condition for sub-100 nm devices with ultra- thin gate oxides is a gate-length and stress-voltage dependent phenomenon. For 90 nm NMOS devices, Vg@Isubmax degradation becomes dominant again when stress voltage is 2.0 V or less. For a set stress voltage, e.g. 2.5 V, Vg@Isubmax degradation is observed to be dominant for gate length (L$-eff$/) larger than 130 nm (90 nm). Negligible device degradation (less than 1%) under high uniform gate field tunneling stress suggests lateral electric field is causing the device degradation and CHCI as the dominant stress mechanism in sub-100 nm N-MOSFETs with direct tunneling oxides. Post-stress sub-threshold swing, charge-pumping and DC-current-voltage characterization suggest that stress-generated interface trap is a major cause of device degradation. !10
机译:摘要:研究了在100 nm以下栅极长度的器件中由于热载流子注入而导致的器件退化。对具有2.2 nm一氧化二氮(Idsat等于735 uA /微米,Idoff等于1.1 nA /微米@Vdd等于1.5 V)的90 nm栅极长度(CD SEM)N-MOSFET施加电应力并测量长达200,000秒。 Vg @ Isubmax和Vg都等于在1.8、2.0、2.2 V,2.5 V和2.8 V时的Vd应力条件。与传统的理解相反,Vg等于Vd,即通道热载流子注入(CHCl),应力导致更多的idlin,Idsat,Vt和Gm降解。在用1.6纳米热氧化物和一氧化二氮以及1.3纳米一氧化氮制造的NMOS器件中观察到了类似的趋势。对于具有超薄栅极氧化物的100 nm以下器件,CHCI是最坏的DC热载流子应力条件,是栅极长度和应力-电压相关的现象。对于90 nm NMOS器件,当应力电压为2.0 V或更低时,Vg @ Isubmax降级再次成为主要问题。对于设定的应力电压,例如对于大于130 nm(90 nm)的栅极长度(L $ -eff $ /),观察到2.5 V,Vg @ Isubmax降级是主要的。在均匀的高栅极电场隧穿应力下,器件的劣化几乎可以忽略不计(小于1%),这表明横向电场正在引起器件劣化,而在采用直接隧穿氧化物的100 nm以下N-MOSFET中,CHCI是主要的应力机理。应力后的亚阈值摆幅,电荷泵和直流电流电压表征表明,应力产生的界面陷阱是器件性能下降的主要原因。 !10

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号