首页> 外文会议>IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics >Myoelectric model-based control of a bi-lateral robotic ankle exoskeleton during even ground locomotion *
【24h】

Myoelectric model-based control of a bi-lateral robotic ankle exoskeleton during even ground locomotion *

机译:在地面运动过程中,双边机器人脚踝外骨骼的基于肌电模型的控制*

获取原文

摘要

Individuals with neuromuscular injuries may fully benefit from wearable robots if a new class of wearable technologies is devised to assist complex movements seamlessly in everyday tasks. Among the most important tasks are locomotion activities. Current human-machine interfaces (HMI) are challenged in enabling assistance across wide ranges of locomoting tasks. Electromyography (EMG) and computational modelling can be used to establish an interface with the neuromuscular system. We propose an HMI based on EMG-driven musculoskeletal modelling that estimates biological joint torques in real-time and uses a percentage of these to dynamically control exoskeleton-generated torques in a task-independent manner, i.e. no need to classify locomotion modes. Proof of principle results on one subject showed that this approach could reduce EMGs during exoskeleton-assisted even ground locomotion compared to transparent mode (i.e. zero impedance). Importantly, results showed that a substantial portion of the biological ankle joint torque needed to walk was transferred from the human to the exoskeleton. That is, while the total human-exoskeleton ankle joint was always similar between assisted and zero-impedance modes, the ratio between exoskeleton-generated and human-generated torque varied substantially, with human-generated torques being dynamically compensated by the exoskeleton during assisted mode. This is a first step towards natural, continuous assistance in a large variety of movements.
机译:如果新型的可穿戴技术被设计为在日常任务中无缝地协助复杂的运动,则神经肌肉受伤的个人可能会从可穿戴机器人中完全受益。运动是最重要的任务之一。当前的人机界面(HMI)在实现广泛的机车任务协助方面面临挑战。肌电图(EMG)和计算模型可用于建立与神经肌肉系统的接口。我们提出了一种基于EMG驱动的肌肉骨骼模型的HMI,该模型可实时估算生物关节扭矩,并使用其中的一定百分比以独立于任务的方式动态控制外骨骼产生的扭矩,即无需对运动模式进行分类。某一主题的原理证明证明,与透明模式(即零阻抗)相比,此方法可以在外骨骼辅助的地面运动过程中减少EMG。重要的是,结果表明,行走所需的大部分生物踝关节扭矩已从人身上转移到外骨骼上。也就是说,尽管辅助和零阻抗模式下的总人-外骨骼踝关节始终相似,但外骨骼产生的扭矩与人产生的扭矩之间的比率却发生了很大的变化,在辅助模式下,外骨骼可以动态补偿人产生的扭矩。这是朝着各种运动提供自然,持续协助的第一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号