首页> 外文会议>International Conference on Information and Communication Systems >Building Cognitive Profiles of Learners Using EEG
【24h】

Building Cognitive Profiles of Learners Using EEG

机译:使用脑电图建立学习者的认知档案

获取原文

摘要

Cognitive load refers to the used amount of working memory. It is very hard to be detected, especially in on-line and computer-supported learning. Thus, it is one of the most important challenges for educational technologists and instructional designers to address. Electroencephalogram (EEG) is a methodology that monitors the electric activity in the brain. EEG has been effective in detecting subjects’ emotional and cognitive states. In this paper, an approach for detecting the basic cognitive states that affect learning outcomes using EEG signals is proposed. Detected states include engagement, instantaneous attention, focused attention, working memory, planning, shifting and visual perception. The proposed approach consists of the following. First, 127 students in their undergraduate university-level studies undergo scientifically-validated cognitive assessment tests that evoke and measure their full cognitive profiles while putting on a 14-channel wearable EEG headset. Then, the collected data are used to train deep models as well as shallow classifiers to automatically predict the analyzed cognitive states. Although the main advantage of the deep learning models is avoiding the hand-crafted features needed for the shallow classifiers, the shallow classifiers outperformed the deep learning-based ones with a minimum accuracy of 92% as compared to the deep models with a maximum obtained accuracy of 78%.
机译:认知负荷是指工作记忆的使用量。这很难被检测到,尤其是在在线和计算机支持的学习中。因此,这是教育技术人员和教学设计师应对的最重要挑战之一。脑电图(EEG)是一种监测大脑中电活动的方法。脑电图可以有效地检测受试者的情绪和认知状态。在本文中,提出了一种使用EEG信号检测影响学习结果的基本认知状态的方法。检测到的状态包括参与,瞬时注意力,集中注意力,工作记忆,计划,转移和视觉感知。提议的方法包括以下内容。首先,在他们大学本科学习中的127名学生接受了经过科学验证的认知评估测试,这些测试可以在戴上14通道可穿戴式EEG头戴式耳机时唤起并测量其全部认知特征。然后,收集的数据用于训练深度模型和浅层分类器,以自动预测所分析的认知状态。尽管深度学习模型的主要优点是避免了浅分类器所需的手工特征,但与深度模型相比,浅分类器的准确度最低,比基于深度学习的分类器要低92%。占78%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号