首页> 外文会议>IEEE Electronic Components and Technology Conference >Multi-physics Modelling and Experimental Investigation – An Original Approach for Laser-Dicing/Grooving Process Optimization
【24h】

Multi-physics Modelling and Experimental Investigation – An Original Approach for Laser-Dicing/Grooving Process Optimization

机译:多物理场建模和实验研究–激光切割/切槽工艺优化的原始方法

获取原文

摘要

The highly complex technology requirements of today's integrated circuits (ICs), lead to the increasingly use of several materials types such as metal structures, brittle dielectrics, porous low-k and ultra-low-k materials which are used in both front-end-of-line (FEOL) and back-end-of-line (BEOL) process for wafer manufacturing. In order to singulate chips from wafers, a critical laser-grooving process, prior to blade dicing, is used to remove these layers of materials out of the dicing street. The combination of laser-grooving and blade dicing allows to reduce the potential risk of induced mechanical defects such micro-cracks, chipping, on the wafer top surface where circuitry is located. Nevertheless, challenges related to unexpected drawbacks on process such as efficiency, quality and reliability still remain. To maximize control of this critical process and reduce its undesirable effects, numerical models of nano-second laser pulsed and multi-stack material interaction have been developed. The modeling strategy using finite elements formalism is based on the convergence of two approaches, numerical and experimental Validation. To evaluate this interaction, several laser grooved samples were performed using IBM 14 nm technology node wafer and were correlated with finite elements modeling. Three different aspects were studied; phase change, thermo-mechanical and optical sensitive parameters. The numerical model makes it possible to simulate groove profile (depth, width, etc.) of a single pulse or multi-pulses on BEOL wafer material. Moreover, the heat-affected zone (HAZ) has been estimated as a function of laser operating parameters (power, frequency, spot size, defocus, speed, etc.). After modeling validation and calibration, a reasonable agreement between experiment and modeling results has been observed in terms of groove depth, width and HAZ
机译:当今集成电路(IC)的技术要求非常复杂,导致越来越多地使用几种材料类型,例如金属结构,脆性电介质,多孔低k和超低k材料,这些材料都用于前端晶圆制造的在线(FEOL)和后端(BEOL)工艺。为了从晶片中分离出芯片,在刀片切割之前,关键的激光刻槽工艺用于将这些材料层从切割道中移出。激光刻槽和刀片切割的组合可降低在电路所在的晶圆顶面上引起的机械缺陷(如微裂纹,碎裂)的潜在风险。然而,仍然存在与过程中意想不到的缺陷有关的挑战,例如效率,质量和可靠性。为了最大程度地控制此关键过程并减少其不良影响,已开发了纳秒激光脉冲和多堆叠材料相互作用的数值模型。使用有限元形式主义的建模策略基于数值验证和实验验证这两种方法的融合。为了评估这种相互作用,使用IBM 14 nm技术节点晶圆执行了一些激光开槽的样品,并将它们与有限元建模相关联。研究了三个不同方面:相变,热机械和光学敏感参数。数值模型可以模拟BEOL晶片材料上单脉冲或多脉冲的凹槽轮廓(深度,宽度等)。此外,热影响区(HAZ)已根据激光工作参数(功率,频率,光斑大小,散焦,速度等)进行了估算。经过模型验证和校准后,在沟槽深度,宽度和热影响区方面,观察到了实验和建模结果之间的合理一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号