首页> 外文会议>International Conference on Ubiquitous and Future Networks >An Iterative Algorithm of Key Feature Selection for Multi-class Classification
【24h】

An Iterative Algorithm of Key Feature Selection for Multi-class Classification

机译:多类分类的关键特征选择迭代算法

获取原文

摘要

In this paper, we propose an iterative algorithm of key feature selection for multi-class classification problems, where the data includes a large number of features but the amount of data is limited. For efficient classification, the proposed algorithm first extracts a set of key feature candidates based on Boruta algorithm and then iteratively adopts conventional machine learning based classification algorithms to determine key features. Simulation results show that the proposed algorithm can effectively determine key features, leading to improved classification accuracy compared to direct adoption of multi-class classification algorithms.
机译:在本文中,我们提出了一种用于多类分类问题的关键特征选择的迭代算法,其中数据包含大量特征,但是数据量有限。为了进行有效的分类,该算法首先基于Boruta算法提取一组关键特征候选,然后迭代采用传统的基于机器学习的分类算法来确定关键特征。仿真结果表明,与直接采用多分类算法相比,该算法可以有效地确定关键特征,从而提高分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号