首页> 外文会议>Chinese Control Conference >Expectation-Maximization Algorithm Based Identification of Hammerstein Nonlinear ARMAX Systems with Gaussian Mixture Noises
【24h】

Expectation-Maximization Algorithm Based Identification of Hammerstein Nonlinear ARMAX Systems with Gaussian Mixture Noises

机译:基于期望最大化算法的含高斯混合噪声的Hammerstein非线性ARMAX系统识别

获取原文

摘要

This paper presents a robust iterative identification scheme for a class of Hammerstein nonlinear ARMAX systems. The identification problem is formulated under the framework of maximum likelihood estimation and solved by the expectation-maximization (EM) algorithm. Instead of modeling the ambient noise with a Gaussian distribution, the heavy tailed Gaussian mixture distribution is utilized, which ensures the estimation algorithm is robust to the outliers. By means of the over-parameterization method and replacing the unmeasurable noise terms with the estimation residuals, the iterative algorithm is able to identify the system model and the parameters of noise distribution simultaneously. The simulation results indicate the effectiveness of the proposed algorithm.
机译:本文提出了一类Hammerstein非线性ARMAX系统的鲁棒迭代识别方案。识别问题是在最大似然估计的框架内提出的,并通过期望最大化(EM)算法解决。代替使用高斯分布对环境噪声建模,而是使用重尾高斯混合分布,这可确保估计算法对异常值具有鲁棒性。通过过度参数化方法,用估计残差代替无法测量的噪声项,该迭代算法能够同时识别系统模型和噪声分布参数。仿真结果表明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号