首页> 外文会议>International Bhurban Conference on Applied Sciences and Technology >Plasma flow optimization for 7YSZ quasi-columnar coating by plasma spray-physical vapor deposition
【24h】

Plasma flow optimization for 7YSZ quasi-columnar coating by plasma spray-physical vapor deposition

机译:通过等离子喷涂-物理气相沉积法优化7YSZ准柱状涂层的等离子流

获取原文

摘要

Plasma spray-physical vapor deposition is an emerging coating technique, developed to produce vapor deposited thermal barrier coatings with large area coverage. The degree of feedstock evaporation and resulting coating microstructures are dependent upon plasma spray process parameters like plasma flow, torch power, plasma gas composition, carrier gas flow and powder feed rate. In the present work, influence of total plasma flow rate on plasma-feedstock interaction inside plasma torch nozzle and corresponding deposition mechanism has been investigated. Theoretical calculations show that maximum energy (11276 kJ/kg) is transferred to injected powder feedstock at lowest plasma flow of 85 L/min (25Ar/60He). With the increase of total flow rate from 85 L/min to 100 L/min by incrementing argon (Ar) 5 L/min, the enthalpy transferred to representative 1 micron spherical YSZ particle reduced by 5%, 23% and 36% respectively. The drop in energy is due to decrease of plasma temperature and increase in momentum gained by the feedstock material with the increase of total plasma flow. 7~8 weight % agglomerated YSZ powder was used to manufacture the coating microstructures at total plasma flow of 90 L/min (30Ar/60He), 95 L/min (35Ar/60He) and 100 L/min (40Ar/60He). The morphology of produced coatings has shown good correspondence with the theoretical prediction. Quasi-columnar microstructure was observed with the former plasma flow confirming that majority deposition is from vapor phase. For the latter case, dense-layered microstructure was obtained mainly from molten droplets. Based on micro-structural observations, a phase deposition model for quasi-columnar coatings was proposed.
机译:等离子喷涂物理气相沉积是一种新兴的涂层技术,其开发目的是生产具有大面积覆盖范围的气相沉积热障涂层。原料蒸发的程度和所得涂层的微观结构取决于等离子喷涂工艺参数,例如等离子流量,割炬功率,等离子气体成分,载气流量和粉末进料速率。在目前的工作中,已经研究了总等离子体流速对等离子体炬喷嘴内的等离子体-原料相互作用的影响以及相应的沉积机理。理论计算表明,最大能量(11276 kJ / kg)在最低血浆流量85 L / min(25Ar / 60He)的情况下转移到注入的粉末原料中。通过将氩气(Ar)的总流量从85 L / min增加到100 L / min,将氩气(Ar)增加到5 L / min,转移到代表性的1微米球形YSZ颗粒上的焓降低了5 \%,23 \%和36 \ % 分别。能量的下降归因于等离子体温度的降低以及随着总等离子体流量的增加,原料所获得的动量增加。使用7〜8 wt%的团聚YSZ粉末在90 L / min(30Ar / 60He),95 L / min(35Ar / 60He)和100 L / min(40Ar / 60He)的总等离子体流量下制造涂层微结构。所产生的涂层的形态已显示出与理论预测的良好对应。观察到准柱状微观结构,前者的等离子体流证实了大部分沉积来自气相。对于后一种情况,致密层的微观结构主要是从熔融液滴中获得的。基于微观结构的观察,提出了准柱状涂层的相沉积模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号