首页> 外文会议>International Bhurban Conference on Applied Sciences and Technology >Plasma flow optimization for 7YSZ quasi-columnar coating by plasma spray-physical vapor deposition
【24h】

Plasma flow optimization for 7YSZ quasi-columnar coating by plasma spray-physical vapor deposition

机译:等离子体喷雾物理气相沉积7YSZ准柱状涂层的等离子体流动优化

获取原文

摘要

Plasma spray-physical vapor deposition is an emerging coating technique, developed to produce vapor deposited thermal barrier coatings with large area coverage. The degree of feedstock evaporation and resulting coating microstructures are dependent upon plasma spray process parameters like plasma flow, torch power, plasma gas composition, carrier gas flow and powder feed rate. In the present work, influence of total plasma flow rate on plasma-feedstock interaction inside plasma torch nozzle and corresponding deposition mechanism has been investigated. Theoretical calculations show that maximum energy (11276 kJ/kg) is transferred to injected powder feedstock at lowest plasma flow of 85 L/min (25Ar/60He). With the increase of total flow rate from 85 L/min to 100 L/min by incrementing argon (Ar) 5 L/min, the enthalpy transferred to representative 1 micron spherical YSZ particle reduced by 5%, 23% and 36% respectively. The drop in energy is due to decrease of plasma temperature and increase in momentum gained by the feedstock material with the increase of total plasma flow. 7~8 weight % agglomerated YSZ powder was used to manufacture the coating microstructures at total plasma flow of 90 L/min (30Ar/60He), 95 L/min (35Ar/60He) and 100 L/min (40Ar/60He). The morphology of produced coatings has shown good correspondence with the theoretical prediction. Quasi-columnar microstructure was observed with the former plasma flow confirming that majority deposition is from vapor phase. For the latter case, dense-layered microstructure was obtained mainly from molten droplets. Based on micro-structural observations, a phase deposition model for quasi-columnar coatings was proposed.
机译:等离子体喷雾物理气相沉积是一种新兴涂层技术,用于产生具有大面积覆盖的气相沉积的热阻挡涂层。原料蒸发程度和所得到的涂布微结构取决于等离子体流动,割炬动力,等离子体组合物,载气流和粉末进料速率等等离子体喷射工艺参数。在本作工作中,研究了总等离子体流速对等离子体炬喷嘴内部等离子体原料相互作用的影响和相应的沉积机构。理论计算表明,最大能量(11276kJ / kg)以85升/分钟(25ar / 60he)的最低血浆流动以最低血浆流量转移到注入粉末原料。通过递增氩气(AR)5 L / min的85 L / min的总流速的增加,转移到代表性1微米球形YSZ颗粒的焓降低了5 %,23 %和36 % 分别。能量下降是由于等离子体温度的降低和原料材料通过总等离子体流量的增加而增加的动量。 7〜8重量%凝聚的YSZ粉末用于在90L / min(30AR / 60HE),95L / min(35AR / 60HE)和100L / min(40AR / 60HE)中的总等离子体流动的涂层微结构。产生的涂层的形态与理论预测表现出良好的对应关系。用前血浆流动观察到准柱状微观结构,该等离子体流动证实大多数沉积来自气相。对于后一种情况,主要由熔融液滴获得致密层微观结构。基于微结构观察,提出了一种拟柱涂层的相沉积模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号