首页> 外文会议>International Workshop on Junction Technology >Defect generation in Si substrates during plasma processing: Model prediction and characterization techniques
【24h】

Defect generation in Si substrates during plasma processing: Model prediction and characterization techniques

机译:等离子体处理过程中硅衬底中的缺陷产生:模型预测和表征技术

获取原文

摘要

The increasing demand for higher performance of ULSI circuits requires aggressive shrinkage of device feature sizes in accordance with Moore's law. Plasma processing plays an important role in achieving fine patterns with anisotropic features in metal-oxide-semiconductor field-effect transistors (MOSFETs). Despite advancements in plasma processing, the degradation of material properties due to plasma exposure has become a key issue. Such degradation mechanisms - the negative aspect of plasma processing - are usually referred to as “plasma-induced damage” [1, 2]. In general, plasma-induced damage (PID) is categorized into three types on the basis of the mechanism of its generation [2], namely, “charging damage”, “radiation damage”, and “physical damage”. Charging damage [3] is induced by conduction current from plasma flowing into dielectric materials in MOSFETs, while radiation damage is caused by high-energy photon interactions in materials [4]. Physical damage is induced by high-energy ion bombardment on Si substrates or other material surfaces. The ion bombardment damage forms the surface modified region and creates localized defect structures underneath the region. Recently the created defects in Si substrates have been considered to be a cause of the so-called Si recess [5, 6] and the performance degradation of MOSFETs [7-9]. One of the critical concerns regarding this plasma-induced physical damage (PPD) is the fact that the damage generation mechanism is governed by basic plasma parameters, in other words, the damage does not naturally scale with the device feature sizes. This paper provides an overview of the modeling and characterization of defect generation in materials, in particular, in Si substrates during plasma processing. Some of the emerging topics - damage generation in three-dimensional structures and the recovery process - are discussed as future perspectives.
机译:对ULSI电路更高性能的日益增长的需求要求根据摩尔定律大幅缩小器件功能部件的尺寸。在金属氧化物半导体场效应晶体管(MOSFET)中,等离子体处理在获得具有各向异性特征的精细图案方面起着重要作用。尽管等离子处理取得了进步,但是由于等离子暴露而导致的材料性能下降已成为关键问题。这种降解机制(等离子处理的负面影响)通常称为“等离子诱发的损害” [1、2]。通常,基于等离子体产生的损伤(PID),根据其产生的机理将其分为三类[2],即“充电损伤”,“辐射损伤”和“物理损伤”。充电损坏[3]是由等离子体流入MOSFET的介电材料的传导电流引起的,而辐射损坏则是由材料中的高能光子相互作用引起的[4]。物理损坏是由高能离子轰击在Si衬底或其他材料表面上引起的。离子轰击损坏形成表面改性区域,并在该区域下方形成局部缺陷结构。近来,已经认为在硅衬底中产生的缺陷是所谓的硅凹槽[5、6]和MOSFET的性能下降的原因[7-9]。关于这种等离子体诱发的物理损坏(PPD)的关键问题之一是,损坏的产生机制受基本的等离子体参数控制,换句话说,损坏不会自然地随设备特征尺寸而变化。本文概述了材料中缺陷产生的建模和特征,特别是等离子体处理过程中硅衬底中缺陷产生的特征。某些新出现的主题-三维结构中的损坏生成和恢复过程-将作为未来的观点进行讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号