首页> 外文会议>RSI International Conference on Robotics and Mechatronics >Robust Adaptive Bilateral Control of Teleoperation Systems with Uncertain Parameters and Unmodeled Dynamics
【24h】

Robust Adaptive Bilateral Control of Teleoperation Systems with Uncertain Parameters and Unmodeled Dynamics

机译:参数不确定,动力学模型不确定的遥操作系统鲁棒自适应双向控制

获取原文

摘要

Kinematic and dynamic parameters of robot manipulators are difficult to measure exactly. Also, time varying unknown dynamical parameters of human arm, during interaction with the master robot and unknown parameters of environment during interaction with the slave robot, in teleoperation systems, insert further uncertainties. Furthermore, unknown parameters, unmodeled dynamics of master/slave robots, human arm model and environment introduce more uncertainties. In this paper, a robust adaptive master-slave teleoperation control strategy is introduced which require neither the exact knowledge about the parameters of the master/slave robots, human arm and environment, because of the adaptability with the unknown parameters, nor the exact dynamical equation of master/slave Falcon robot, because of the robustness against the unmodeled dynamics. Two Novint Falcon robots are used as master/slave robots and due to having the highly nonlinear complexity of these robots, they are considered as a single translational equivalent mechanism with known inertia, damping and stiffness coefficient and an unmodeled dynamic term because of this approximation. The human arm and environment are modeled as a 1-DoF mass, spring and damper model (MSD) with unknown coefficients. Moreover, an additional nonlinear spring and nonlinear damper has been used for better approximation of nonlinear property of the human arm and the environment. A Lyapunov function is introduced for stability and the position tracking convergence proof of the entire teleoperation system. The validity of the theory is confirmed by simulations.
机译:机器人操纵器的运动学和动力学参数很难精确测量。同样,在遥操作系统中,与主机器人交互时,人手臂的未知动力学参数随时间变化而未知;与从机器人交互时,环境中未知参数随时间变化,还带来了进一步的不确定性。此外,未知参数,主/从机器人的未建模动力学,人手臂模型和环境会带来更多不确定性。本文介绍了一种鲁棒的自适应主-从遥操作控制策略,该策略既不需要精确了解主/从机器人,人的手臂和环境的参数,又不需要参数的自适应性,也不需要精确的动力学方程主/从Falcon机器人的特性,因为它具有针对未建模动力学的鲁棒性。有两个Novint Falcon机器人用作主/从机器人,由于这些机器人具有高度的非线性复杂性,由于这种近似,它们被视为具有已知惯性,阻尼和刚度系数以及未建模的动态项的单个平移等效机构。人体手臂和环境被建模为具有未知系数的一自由度质量,弹簧和阻尼器模型(MSD)。此外,已使用附加的非线性弹簧和非线性阻尼器来更好地逼近人体手臂和环境的非线性特性。引入了Lyapunov函数,以确保整个远程操作系统的稳定性和位置跟踪收敛性。通过仿真证实了该理论的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号