首页> 外文会议>International astronautical congress >ACTIVE CONTROL OF AUTONOMOUS CAPILLARY SYSTEMS FOR LAB-ON-CHIP DEVICES SUITABLE FOR MICRO- AND NANO-SATELLITES BIOLOGICAL EXPERIMENTS
【24h】

ACTIVE CONTROL OF AUTONOMOUS CAPILLARY SYSTEMS FOR LAB-ON-CHIP DEVICES SUITABLE FOR MICRO- AND NANO-SATELLITES BIOLOGICAL EXPERIMENTS

机译:适用于微卫星和纳米卫星生物实验的芯片实验室设备自主毛细管系统的主动控制

获取原文

摘要

In the last decades space activities have increased in number and intensity, not only in fields of astronomical research, but also in others such as the medical or biology field. Understanding certain biological processes that could improve the human quality of life is a strongly desired goal, and space offers a scenario where, due to its characteristic properties that differ from the Earth environment, such as microgravity, particular biomolecular processes can be unmasked. Developing a technology that is reliable, simple, light, small and as a consequence, economic, is a need for the research activities in space. Lowering the costs of space activities is mandatory in order to make space accessible and affordable to all countries. One of the main challenges for making autonomous devices suitable for automatic experiment aboard micro- and nano-satellites, is the ability to actively control the flow of samples and reagents. Autonomous capillary networks allow to implement complex fluidic operation without the need for external pumping systems which is an attractive feature for nanosatellites' payloads. However, such systems cannot be easily controlled to execute experiments with precisely defined timing. In order to add this ability, a novel system combining capillary microfluidics and electrowetting on dielectrics (EWOD) is proposed. A test device combining the two techniques has been designed, fabricated and successfully tested. The difficulties encountered and solved are related to the development of the technological steps needed for the fabrication of regions characterized by different hydrophobicity on a single glass substrate. These peculiar characteristics are needed in order to combine capillary microfluidics with EWOD-controlled fluid actuation. In this work, the fabrication processes have been optimized in order to adapt them to work with different combinations of materials. The fabrication processes include photolithography as a way lo pattern a specific configuration, metals evaporation to build electrodes, chemical attack to remove certain materials and ultrasound aided lift-off process. Tests on surfaces with different hydrophobicities and tests on EWOD are carried out experimenting with two different materials as hydrophobic surfaces, Teflon® and Cytop®, to prove their suitability for the final construction of the proposed lab-on-chip and learn the optimum fabrication process.
机译:在过去的几十年中,不仅在天文学研究领域,而且在医学或生物学领域,太空活动的数量和强度都在增加。理解某些可以改善人类生活质量的生物过程是一个非常迫切的目标,太空提供了一种场景,由于其与地球环境不同的特性(例如微重力),可以揭示特定的生物分子过程。发展一种可靠,简单,轻便,小巧,经济的技术是太空研究活动的需要。必须降低太空活动的成本,以使所有国家都能使用和负担得起太空。使自主设备适合微卫星和纳米卫星上的自动实验的主要挑战之一是主动控制样品和试剂流动的能力。自主的毛细管网络无需外部泵送系统即可实现复杂的流体操作,这对于纳米卫星的有效载荷而言是一个吸引人的功能。但是,这样的系统不容易控制以精确定义的时间执行实验。为了增加这种能力,提出了一种将毛细管微流体和电介质上电润湿(EWOD)相结合的新型系统。结合了这两种技术的测试设备已经过设计,制造和测试。遇到和解决的困难与在单个玻璃基板上制造以不同疏水性为特征的区域所需的技术步骤的发展有关。为了将毛细管微流体与EWOD控制的流体驱动相结合,需要这些特殊的特性。在这项工作中,已经对制造过程进行了优化,以使其适应不同的材料组合。制造过程包括光刻法(作为特定结构的图案),金属蒸发以构建电极,化学侵蚀以去除某些材料以及超声辅助剥离工艺。在具有不同疏水性的表面上进行了测试,并在EWOD上进行了测试,并使用两种不同的材料作为疏水性表面Teflon®和Cytop®,以证明它们适用于拟议的芯片实验室的最终结构,并了解最佳的制造工艺。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号