首页> 外文会议>AIAA/ASCE/AHS/ASC structures, structural dynamics and materials conference;AIAA SciTech Forum >Utilization of a Linear Solver for Multiscale Design and Optimization of Microstructures in an Airframe Panel Buckling Problem
【24h】

Utilization of a Linear Solver for Multiscale Design and Optimization of Microstructures in an Airframe Panel Buckling Problem

机译:线性解算器在飞机面板屈曲问题的多尺度设计和微观结构优化中的应用

获取原文
获取外文期刊封面目录资料

摘要

Microstructures have a significant effect on the performance of critical components in numerous aerospace metallic material applications. Examples include panels in airframes that are exposed to high temperatures and sensors used for vibration tuning. This paper addresses the techniques to optimize the microstructure design for polycrystalline metals. The microstructure is quantified with the orientation distribution function (ODF) that determines the volume densities of crystals that make up the polycrystal microstructure. The ODF of polycrystalline alloys (e.g. HCP Titanium) is represented in a discrete form and the volume averaged properties are computed through the ODF. The optimization is performed using the space of all possible volume averaged macro properties (stiffness and thermal expansion). A direct linear solver is employed to find the optimal ODFs. The direct solver is capable of finding exact solutions even for multiple or infinite solution problems. It is firstly applied to the optimization of the panel buckling problem. The objective of the buckling optimization problem is to find the best microstructure design that maximizes the critical buckling temperature. The optimum solution computed with this approach is found to be same as the optimum solution of a global approach that utilizes a genetic algorithm. The linear solver methodology is extended to plastic properties and applied to explore design of a Galfenol beam microstructure for vibration tuning with a yielding objective. We show that the design approach can lead us to multiple optimum solutions.
机译:在许多航空航天金属材料应用中,微结构对关键组件的性能产生重大影响。示例包括暴露在高温下的机身面板和用于振动调整的传感器。本文介绍了用于优化多晶金属微结构设计的技术。用取向分布函数(ODF)量化微结构,该分布函数决定了构成多晶微结构的晶体的体积密度。多晶合金(例如HCP钛)的ODF以离散形式表示,并且通过ODF计算体积平均性能。使用所有可能的体积平均宏观属性(刚度和热膨胀)的空间执行优化。使用直接线性求解器来找到最佳ODF。直接求解器甚至可以为多个或无限个解决问题找到精确的解决方案。首先将其应用于面板屈曲问题的优化。屈曲优化问题的目的是找到使临界屈曲温度最大化的最佳微观结构设计。发现用这种方法计算出的最优解与利用遗传算法的全局方法的最优解相同。线性求解器方法已扩展到塑性属性,并用于探索Galfenol束微结构的设计,以进行屈服目标的振动调谐。我们证明了这种设计方法可以使我们获得多种最佳解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号