【24h】

MULTIPHASE THERMOMECHANICAL TOPOLOGY OPTIMIZATION OF FUNCTIONALLY GRADED LATTICE INJECTION MOLDS

机译:功能梯度网格注射模具的多相热力学拓扑优化

获取原文

摘要

This work presents a design methodology of lightweight, thermally efficient injection molds with functionally graded lattice structure using multiphase thermomechanical topology optimization. The aim of this methodology is to increase or maintain thermal and mechanical performance as well as to lower the cost of thermomechanical components such as injection molds when these are fabricated using additive manufacturing technologies. The proposed design approach makes use of thermal and mechanical finite element analyses to evaluate the components stiffness and heat conduction in two length scales: mesoscale and macroscale. The mesoscale contains the structural features of the lattice unit cell. Mesoscale homogenized properties are implemented in the macroscale model, which contains the components boundary conditions including the external mechanical loads as well as the heat sources and heat sinks. The macroscale design problem addressed in this work is to find the optimal distribution of given number of lattice unit cell phases within the component so its mass is minimized, while satisfying stiffness and heat conduction constraints of the overall component and the specific regions. This problem is solved through two steps: conceptual design generation and multiphase material distribution. In the first step, the mass is minimized subject to constraints of mechanical compliance and thermal cost function. In the second step, a given number of lattice material are optimally distributed subjected to nonlinear thermal and mechanical constraints, e.g., maximum nodal temperature, maximum nodal displacement. The proposed design approach is demonstrated through 2D and 3D examples including the optimal design of the core of an injection mold. The results demonstrate that a small reduction in mechanical and thermal performance allows for significant mass savings: the second example shows that 3.5% heat conduction reduction and 8.7% stiffness reduction results in 30.3% mass reduction.
机译:这项工作提出了一种使用多相热机械拓扑优化技术,具有功能梯度晶格结构的轻巧,热效率高的注塑模具的设计方法。这种方法的目的是提高或保持热性能和机械性能,以及降低使用增材制造技术制造的热机械部件(如注塑模)的成本。拟议的设计方法利用热和机械有限元分析,以中尺度和宏观尺度两个长度尺度评估部件的刚度和热传导。中尺度包含晶格晶胞的结构特征。中尺度均质化特性在宏观模型中实现,该模型包含组件边界条件,包括外部机械载荷以及热源和散热器。在这项工作中解决的宏观设计问题是找到部件内给定数量的晶格晶胞相的最佳分布,从而使其质量最小化,同时满足整个部件和特定区域的刚度和导热约束。这个问题可以通过两个步骤来解决:概念设计生成和多相材料分配。第一步,在机械柔量和热成本函数的约束下,将质量最小化。在第二步骤中,在非线性热和机械约束(例如,最大节点温度,最大节点位移)的作用下,给定数量的晶格材料被最佳地分布。通过2D和3D实例(包括注塑模具型芯的最佳设计)演示了所提出的设计方法。结果表明,机械性能和热性能的轻微降低可显着节省质量:第二个示例显示,导热率降低3.5%,刚度降低8.7%,质量降低30.3%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号