首页> 外文会议>Design automation conference >MULTIPHASE THERMOMECHANICAL TOPOLOGY OPTIMIZATION OF FUNCTIONALLY GRADED LATTICE INJECTION MOLDS
【24h】

MULTIPHASE THERMOMECHANICAL TOPOLOGY OPTIMIZATION OF FUNCTIONALLY GRADED LATTICE INJECTION MOLDS

机译:多相热机械拓扑优化功能分级晶格注塑模具

获取原文

摘要

This work presents a design methodology of lightweight, thermally efficient injection molds with functionally graded lattice structure using multiphase thermomechanical topology optimization. The aim of this methodology is to increase or maintain thermal and mechanical performance as well as to lower the cost of thermomechanical components such as injection molds when these are fabricated using additive manufacturing technologies. The proposed design approach makes use of thermal and mechanical finite element analyses to evaluate the components stiffness and heat conduction in two length scales: mesoscale and macroscale. The mesoscale contains the structural features of the lattice unit cell. Mesoscale homogenized properties are implemented in the macroscale model, which contains the components boundary conditions including the external mechanical loads as well as the heat sources and heat sinks. The macroscale design problem addressed in this work is to find the optimal distribution of given number of lattice unit cell phases within the component so its mass is minimized, while satisfying stiffness and heat conduction constraints of the overall component and the specific regions. This problem is solved through two steps: conceptual design generation and multiphase material distribution. In the first step, the mass is minimized subject to constraints of mechanical compliance and thermal cost function. In the second step, a given number of lattice material are optimally distributed subjected to nonlinear thermal and mechanical constraints, e.g., maximum nodal temperature, maximum nodal displacement. The proposed design approach is demonstrated through 2D and 3D examples including the optimal design of the core of an injection mold. The results demonstrate that a small reduction in mechanical and thermal performance allows for significant mass savings: the second example shows that 3.5% heat conduction reduction and 8.7% stiffness reduction results in 30.3% mass reduction.
机译:该工作介绍了使用多相热机械拓扑优化的功能梯度晶格结构的轻质,热高效注射模具的设计方法。该方法的目的是增加或维持热和机械性能,并在使用添加剂制造技术制造这些产品时降低热机械部件的成本,例如注射模具。所提出的设计方法利用热和机械有限元分析来评估两个长度尺度的组件刚度和热传导:Mescreale和Macroscale。 Mescre包含晶格单元电池的结构特征。 Mesoscale均匀化特性在宏观模型中实现,其中包含包括外部机械负载以及热源和散热器的组件边界条件。在该工作中寻址的Macroscale设计问题是在组件内找到给定数量的晶格单元电池相的最佳分布,因此其质量最小化,同时满足整个部件和特定区域的刚度和热传导约束。通过两个步骤解决了这个问题:概念设计生成和多相材料分布。在第一步中,质量最小化以受到机械顺应性和热成本函数的约束。在第二步骤中,给定数量的晶格材料经受非线性热和机械约束的最佳分布,例如,最大节点温度,最大节点位移。所提出的设计方法通过2D和3D示例来证明包括注射模具的核心的最佳设计。结果表明,机械和热性能的小降低允许显着的质量节省:第二个实施例表明,3.5%的导热减少和8.7%的刚度降低导致30.3%的质量降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号