首页> 外文会议>IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems >Effects of Silicide Inclusion Shape on Thermal Transport of Silicon-Based Nanowires and Nanocomposites for Thermoelectric Applications
【24h】

Effects of Silicide Inclusion Shape on Thermal Transport of Silicon-Based Nanowires and Nanocomposites for Thermoelectric Applications

机译:硅化物夹杂物对热电应用硅基纳米线热传输的影响

获取原文
获取外文期刊封面目录资料

摘要

Efficient silicon-based thermoelectric materials compatible with the existent electronic technology would provide excellent on-chip cooling opportunities. However, the high thermal conductivity of silicon has historically limited its thermoelectric performance. Here, we demonstrate the high potential of silicon-based nanocomposites by fabricating silicon nanowires with nickel silicide nanoinclusions with a scalable and economic sintering process. Preliminary measurements of the thermal conductivity of single nanowires from 40 to 325 K show a reduction of the thermal conductivity of a factor of 4 compared to silicon nanowires of the same length. We demonstrate that this reduction is probably a due to an increased phonon scattering with the inclusions, which grow epitaxially and form rhombohedral shapes. In order to better predict the thermal conductivity with non-spherical shapes, we combine ray tracing simulations and classical transport theories to demonstrate that the thermal conductivity reduction can be maximized by using elongated inclusion shapes (i.e. triangles or T-shapes) with small neck sizes. The findings of this work expand the understanding of transport phenomena in complex nanoengineered materials and open promising optimization paths for silicon-based thermoelectric materials.
机译:高效与现有电子技术兼容的基于硅的热电材料将提供出色的片上冷却机会。然而,硅的高导热率历史上限制了其热电性能。这里,我们通过用可扩展和经济烧结过程制造硅纳米线的硅纳米线来证明硅基纳米复合材料的高电位。与40至325k的单纳米线的导热率的初步测量显示出与相同长度的硅纳米线相比的导热率的导热率降低。我们证明这种减少可能是由于夹子散射增加的夹子,其外延生长并形成菱形形状。为了更好地预测非球形的导热率,我们将光线跟踪模拟和经典传输理论相结合,以证明通过使用具有小颈部尺寸的细长夹杂物形状(即三角形或T形)来最大化导热率降低。这项工作的调查结果扩展了在复杂的纳米工程材料中对运输现象的理解,并开放了基于硅的热电材料的有希望优化路径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号