...
首页> 外文期刊>Journal of Applied Physics >Effects of metal silicide inclusion interface and shape on thermal transport in silicon nanocomposites
【24h】

Effects of metal silicide inclusion interface and shape on thermal transport in silicon nanocomposites

机译:金属硅化物包裹体界面和形状对硅纳米复合材料热输运的影响

获取原文
获取原文并翻译 | 示例

摘要

While various silicon nanocomposites with their low thermal conductivity have received much attention for thermoelectric applications, the effects of inclusion interface and shape on thermal transport remain unclear. Here, we investigate thermal transport properties of silicon nanocomposites, in which metal silicide inclusions are periodically arranged within silicon. Using the known phonon dispersion relations and the diffuse mismatch model, we explore the effects of different silicide-silicon interfaces, and using Monte Carlo ray tracing simulations, we explore the effects of silicide inclusion shapes. Our investigations show that the thermal conductivity of silicon nanocomposites can be reduced to the range of nanoporous silicon of the same geometry, depending on the interface density, crystal orientation, and acoustic mismatch. For instance, CoSi2 inclusions of [111] orientation can reduce the nanocomposite thermal conductivity more effectively than inclusion materials with lower intrinsic thermal conductivity, such as NiSi2, when the inclusion density is up to 12.5% with an interface density of 7.5 mu m(-1). Among the silicide inclusion materials investigated in this work, Mn4Si7 leads to the lowest nanocomposite thermal conductivity due to a combination of low intrinsic thermal conductivity and high acoustic mismatch. Compared to widely spaced and symmetric inclusions such as a circular shape, narrowly spaced and asymmetric inclusions such as a triangular shape are more effective in limiting the phonon mean free path and reducing the nanocomposite thermal conductivity. These findings regarding thermal transport in silicon nanocomposites with respect to inclusion interface and shape will guide optimal material designs for thermoelectric cooling and power generation.
机译:尽管各种具有低导热率的硅纳米复合材料在热电应用中受到了广泛关注,但夹杂物界面和形状对热传输的影响仍然不清楚。在这里,我们研究了硅纳米复合材料的热传输性能,其中金属硅化物夹杂物定期排列在硅内。使用已知的声子色散关系和扩散失配模型,我们探索了不同硅化物-硅界面的影响,并且使用蒙特卡洛射线追踪模拟,我们探索了硅化物夹杂物形状的影响。我们的研究表明,取决于界面密度,晶体取向和声学失配,硅纳米复合材料的热导率可以降低到相同几何形状的纳米多孔硅的范围。例如,当夹杂物密度最高为12.5%且界面密度为7.5μm(-)时,[111]取向的CoSi2夹杂物比具有较低固有热导率的包裹体材料(例如NiSi2)可以更有效地降低纳米复合材料的导热率。 1)。在这项工作中研究的硅化物夹杂物中,由于低固有热导率和高声学失配的结合,Mn4Si7导致最低的纳米复合材料热导率。与宽间隔的对称夹杂物(例如圆形)相比,窄间隔的不对称夹杂物(例如三角形)在限制声子平均自由程和降低纳米复合材料导热性方面更为有效。这些有关硅纳米复合材料中夹杂物界面和形状的热传输的发现将指导热电冷却和发电的最佳材料设计。

著录项

  • 来源
    《Journal of Applied Physics 》 |2019年第3期| 035106.1-035106.11| 共11页
  • 作者单位

    Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA;

    Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA;

    Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号