首页> 外文会议>International Conference on Ubiquitous Robots and Ambient Intelligence >Representation and reproduction of skills to adapt affine variations in programming by demonstration
【24h】

Representation and reproduction of skills to adapt affine variations in programming by demonstration

机译:通过演示来表现和再现适应编程中仿射变化的技能

获取原文

摘要

In this paper, we propose methods for representing and reproducing skills for a robot to adapt scale and position variations and external perturbations. The robot skill should be adaptable and reusable when there exist variation in scale and position (e.g. isotropic scaling, anisotropic scaling, rotation, deformation and so on) and under external perturbation. For example, consider a robot that learns the skill of drawing a square on a sketchpad placed on a table. The robot should be able to draw a square on a sketchpad moved in real-time and on a sketchpad placed at different angles and positions (e.g. a sketchpad hanging on the wall). The robot should also be able to draw a smaller or larger square using the same skill. It should also be able to draw deformed squares using the same skill, if the geometrical properties of the rectangle or the trapezoid are given. The most similar work for this was the method to use the product of the mixture models based on both global coordinated trajectory and the local coordinated trajectory [1]. Unlike the previous work, our representation afford each mixture model to be controllable by separately modeling one transformation matrix at one mixture model, not the whole mixture models. In our approach, the skill is first modeled as a Gaussian Mixture Model (GMM) using training data. Based on geometric interpretation of the GMM, its mixture components are represented as the priors, the means, and the eigenvectors and eigenvalues of the covariances. This is because the means and the covariances need to be geometrically transformed according to variations and perturbations (see Fig. 1 (b)-(d)). A skill is represented by combining the set of these mixture components with the transformation matrices. The skill is renewed by transforming mixture components based on the transformation matrices that are constructed to reflect the variations and the perturbations. We also propose a method for reproducing a skill that is based on a dynamical system using online Gaussian Mixture Regression (GMR). The online GMR provides mean and covariance trajectories in real-time to the dynamical system (see Fig. 2). The skill is reproduced based on the dynamical system subjected to external perturbations (see Fig. 4). To validate our proposed methods, three tasks, conducting beat patterns, drawing figures, and delivering a cup were tested using the KATANA robot arm shown in Fig. 1 (a).
机译:在本文中,我们提出了用于表示和再现机器人以适应尺度和位置变化以及外部扰动的技能的方法。当规模和位置存在变化(例如各向同性缩放,各向异性缩放,旋转,变形等)并且在外部扰动下,机器人技能应具有适应性和可重用性。例如,考虑一个机器人,该机器人学习在放在桌子上的画板上画正方形的技巧。机器人应该能够在实时移动的草图板上以及在不同角度和位置放置的草图板上绘制正方形(例如,悬挂在墙上的草图板)。机器人也应该能够使用相同的技能绘制较小或较大的正方形。如果给出了矩形或梯形的几何特性,它也应该能够使用相同的技巧绘制变形的正方形。为此,最相似的工作是基于全局协调轨迹和局部协调轨迹使用混合模型乘积的方法[1]。与之前的工作不同,我们的表示方法是通过在一个混合模型(而不是整个混合模型)上分别对一个转换矩阵建模来使每个混合模型可控。在我们的方法中,首先使用训练数据将技能建模为高斯混合模型(GMM)。基于GMM的几何解释,其混合分量表示为先验,均值以及协方差的特征向量和特征值。这是因为均值和协方差需要根据变化和扰动进行几何变换(请参见图1(b)-(d))。通过将这些混合成分的集合与转换矩阵相结合来代表一项技能。通过基于构造为反映变化和扰动的变换矩阵变换混合成分来更新该技能。我们还提出了一种基于在线高斯混合回归(GMR)的基于动态系统的技能再现方法。在线GMR向动力学系统实时提供均值和协方差轨迹(见图2)。该技术是基于受到外部扰动的动力系统进行复制的(参见图4)。为了验证我们提出的方法,使用图1(a)所示的KATANA机器人手臂测试了三个任务:执行拍子模式,绘制图形和交付杯子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号