首页> 外文会议>World biomaterials congress >Cationic switchable lipids: pH-sensitive lipid nanoparticle based on a molecular switch for siRNA delivery
【24h】

Cationic switchable lipids: pH-sensitive lipid nanoparticle based on a molecular switch for siRNA delivery

机译:阳离子可转换脂质:基于siRNA传递的分子开关的pH敏感脂质纳米颗粒

获取原文

摘要

RNA interference provides a targeted approach for silencing gene expression that may prove beneficial in the treatment of diseases such as cancer and genetic disorders. In order to obtain effective gene knockdown, siRNA's must be entrapped and efficiently conveyed into the cytoplasm of cells. pH-sensitive lipidic nanoparticles improve the cytosolic delivery of genes by supporting endosomal escape after endocytosis. In a previous work we reported the use of switchable lipids that were included into PEGylated liposomal preparations and were able to change conformation upon endosomal acidification (Fig 1A). As a result, a fast and efficient cytoplasmic delivery of a highly polar drug model was observed. We decided to use these properties to develop an efficient siRNA delivery system based on a pH-triggered molecular switch. In this study, we synthesized three new cationic switchable lipids (CSL) that can integrate into the structure of lipid nanoparticles (LNP) (Fig 1B). These CSL's differs by the nature of their cationic headgroup. It is hypothesized that, upon protonation of the switchable lipid that occurs in the endosome after endocytosis, hydrogen-bonding opportunities would favor a conformational change (Fig 1 A) which would disturb the lipid packing of the LNP, inducing fusogenic and destabilization properties, thus conferring endosomal-escape properties. We developed three LNP formulations (Fig 1B). The average diameter of the nanoparticles was ~120 nm. The siRNA's encapsulation efficiency was ~ 93%. We then assayed their transfection efficiencies on a HeLa-GFP model. The CSL1 showed no transfection efficiencies (Fig 2A), whereas the CSL2 and CSL3 showed strong transfection efficiencies (Fig 2B and 2C) without significant cytotoxicity. The intracytoplasmic siRNA delivery of the CSL3-based formulation was assayed by fluorescence microscopy (Fig 2D). Using uptake assays we then characterized the cellular entry of the CSL3-based LNP to provide insight into the mechanism by which the nanoparticles accomplishes cytoplasmic delivery of siRNA. Flow cytometry assays depicting the uptake of CSL3/siRNA-Alexa488 in presence of selective inhibitors of the endocytic pathways helped us to characterize the uptake process. This study indicates that caveolae- and clathrine-mediated endocytosis are the major pathways responsible for CSL3/siRNA uptake (Fig 3A). These findings were also confirmed by fluorescence microscopy using siRNA-Alexa647 (Fig 3A). Following endocytosis, the pH of endosomes and lysosomes is rigorously controlled by acidification via the vacuolar H~+- ATPases. This provides a trigger for the pH-sensitive switchable lipid. Transfection of cells with the CSL3/siRNA was realized in the presence of Baf A1, a known inhibitor of vacuolar H~+ ATPases, to determine if the low pH generated inside the vacuoles is involved in siRNA release from endosomes. Treating cells with 600 nM of Baf A1 led to a complete loss of knockdown efficiency, compared to control cells transfected without Baf A1 (Fig 3B). These data confirm the importance of endosomal acidification in the cytoplasmic release of siRNA when delivered with CSL3/siRNA. We report the use of cationic switchable lipids-based lipid nanoparticle for efficient in vitro delivery of siRNA. The best formulation (CSL3-based) is capable of significant knockdown on a HeLa-GFP model at a siRNA dose as low as 1 nM, without apparent cytotoxicity. This formulation shows much promise for in vivo siRNA delivery to the liver.
机译:RNA干扰为沉默基因表达提供了一种有针对性的方法,可能证明对治疗诸如癌症和遗传性疾病等疾病有益。为了获得有效的基因敲低,必须将siRNA捕获并有效地转移到细胞质中。 pH敏感的脂质纳米颗粒通过支持内吞后的内体逃逸来改善基因的胞质传递。在先前的工作中,我们报告了使用可转换脂质的方法,该脂质包含在PEG化脂质体制剂中,能够在内体酸化后改变构象(图1A)。结果,观察到高极性药物模型的快速和有效的细胞质递送。我们决定利用这些特性来开发基于pH触发的分子开关的高效siRNA递送系统。在这项研究中,我们合成了三种可以整合到脂质纳米颗粒(LNP)结构中的新型阳离子可转换脂质(CSL)(图1B)。这些CSL的不同之处在于其阳离子头基的性质。假设,在胞吞作用后内体中发生的可转换脂质质子化时,氢键结合的机会将有利于构象变化(图1 A),这会干扰LNP的脂质堆积,从而引起融合和去稳定化特性,因此赋予内体逃逸特性。我们开发了三种LNP配方(图1B)。纳米粒子的平均直径为〜120 nm。 siRNA的包封率约为93%。然后,我们在HeLa-GFP模型上分析了它们的转染效率。 CSL1没有显示转染效率(图2A),而CSL2和CSL3显示了强大的转染效率(图2B和2C),而没有明显的细胞毒性。基于CSL3的制剂的胞质内siRNA递送通过荧光显微镜法测定(图2D)。然后,使用摄取分析,我们对基于CSL3的LNP的细胞进入进行了表征,以提供对纳米粒子完成siRNA胞质传递的机制的深入了解。流式细胞仪检测描绘了在胞吞途径选择性抑制剂存在下摄取CSL3 / siRNA-Alexa488的过程,有助于我们表征摄取过程。这项研究表明,小窝蛋白和网格蛋白介导的内吞作用是引起CSL3 / siRNA摄取的主要途径(图3A)。这些发现也通过使用siRNA-Alexa647的荧光显微镜检查得到了证实(图3A)。内吞后,通过液泡H〜+ -ATP酶的酸化作用来严格控制内体和溶酶体的pH。这为pH敏感的可转换脂质提供了触发条件。在已知的液泡H + ATP酶抑制剂Baf A1的存在下实现了用CSL3 / siRNA转染细胞,以确定液泡内部产生的低pH是否与从内体释放siRNA有关。与未转染Baf A1的对照细胞相比,用600 nM Baf A1处理的细胞导致敲低效率的完全丧失(图3B)。这些数据证实了内体酸化在与CSL3 / siRNA一起递送时在siRNA胞质释放中的重要性。我们报告了使用阳离子可转换脂质为基础的脂质纳米颗粒的有效的siRNA体外递送。最佳配方(基于CSL3)能够以低至1 nM的siRNA剂量显着降低HeLa-GFP模型的细胞毒性。该制剂显示出将体内siRNA递送至肝脏的巨大希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号