首页> 外文会议>World biomaterials congress >Cationic switchable lipids: pH-sensitive lipid nanoparticle based on a molecular switch for siRNA delivery
【24h】

Cationic switchable lipids: pH-sensitive lipid nanoparticle based on a molecular switch for siRNA delivery

机译:阳离子可切换脂质:基于SiRNA递送的分子开关的pH敏感脂质纳米粒子

获取原文

摘要

RNA interference provides a targeted approach for silencing gene expression that may prove beneficial in the treatment of diseases such as cancer and genetic disorders. In order to obtain effective gene knockdown, siRNA's must be entrapped and efficiently conveyed into the cytoplasm of cells. pH-sensitive lipidic nanoparticles improve the cytosolic delivery of genes by supporting endosomal escape after endocytosis. In a previous work we reported the use of switchable lipids that were included into PEGylated liposomal preparations and were able to change conformation upon endosomal acidification (Fig 1A). As a result, a fast and efficient cytoplasmic delivery of a highly polar drug model was observed. We decided to use these properties to develop an efficient siRNA delivery system based on a pH-triggered molecular switch. In this study, we synthesized three new cationic switchable lipids (CSL) that can integrate into the structure of lipid nanoparticles (LNP) (Fig 1B). These CSL's differs by the nature of their cationic headgroup. It is hypothesized that, upon protonation of the switchable lipid that occurs in the endosome after endocytosis, hydrogen-bonding opportunities would favor a conformational change (Fig 1 A) which would disturb the lipid packing of the LNP, inducing fusogenic and destabilization properties, thus conferring endosomal-escape properties. We developed three LNP formulations (Fig 1B). The average diameter of the nanoparticles was ~120 nm. The siRNA's encapsulation efficiency was ~ 93%. We then assayed their transfection efficiencies on a HeLa-GFP model. The CSL1 showed no transfection efficiencies (Fig 2A), whereas the CSL2 and CSL3 showed strong transfection efficiencies (Fig 2B and 2C) without significant cytotoxicity. The intracytoplasmic siRNA delivery of the CSL3-based formulation was assayed by fluorescence microscopy (Fig 2D). Using uptake assays we then characterized the cellular entry of the CSL3-based LNP to provide insight into the mechanism by which the nanoparticles accomplishes cytoplasmic delivery of siRNA. Flow cytometry assays depicting the uptake of CSL3/siRNA-Alexa488 in presence of selective inhibitors of the endocytic pathways helped us to characterize the uptake process. This study indicates that caveolae- and clathrine-mediated endocytosis are the major pathways responsible for CSL3/siRNA uptake (Fig 3A). These findings were also confirmed by fluorescence microscopy using siRNA-Alexa647 (Fig 3A). Following endocytosis, the pH of endosomes and lysosomes is rigorously controlled by acidification via the vacuolar H~+- ATPases. This provides a trigger for the pH-sensitive switchable lipid. Transfection of cells with the CSL3/siRNA was realized in the presence of Baf A1, a known inhibitor of vacuolar H~+ ATPases, to determine if the low pH generated inside the vacuoles is involved in siRNA release from endosomes. Treating cells with 600 nM of Baf A1 led to a complete loss of knockdown efficiency, compared to control cells transfected without Baf A1 (Fig 3B). These data confirm the importance of endosomal acidification in the cytoplasmic release of siRNA when delivered with CSL3/siRNA. We report the use of cationic switchable lipids-based lipid nanoparticle for efficient in vitro delivery of siRNA. The best formulation (CSL3-based) is capable of significant knockdown on a HeLa-GFP model at a siRNA dose as low as 1 nM, without apparent cytotoxicity. This formulation shows much promise for in vivo siRNA delivery to the liver.
机译:RNA干扰为沉默的基因表达提供了靶向方法,该诱因可能在治疗癌症和遗传疾病等疾病中有益。为了获得有效的基因敲低,必须捕获和有效地传送到细胞的细胞质中的siRNA。 pH敏感的脂质纳米颗粒通过支持内吞作用后支持内体逸出来改善基因的细胞溶胶递送。在先前的工作中,我们报道使用将包含在聚乙二醇化脂质体制剂中的可切换脂质,并且能够在内体酸化时改变构象(图1A)。结果,观察到高极性药物模型的快速有效的细胞质递送。我们决定使用这些性质,基于pH触发的分子开关开发高效的siRNA递送系统。在这项研究中,我们合成了三种新的阳离子可切换脂质(CSL),其可集成到脂质纳米颗粒(LNP)的结构中(图1B)。这些CSL因其阳离子头组的性质而异。假设是,在内吞作用后,在内吞作用中发生的可切换脂质的质子化时,氢键能力将有利于扰乱LNP的脂质包装的构象变化(图1A),从而诱导致沉丝和稳定性的性能赋予内体逃逸属性。我们开发了三种LNP配方(图1B)。纳米颗粒的平均直径为约120nm。 siRNA的封装效率为约93%。然后我们在Hela-GFP模型中测定他们的转染效率。 CSL1没有显示出转染效率(图2A),而CSL2和CSL3显示出强烈的转染效率(图2B和2C),而没有显着的细胞毒性。通过荧光显微镜测定CSL3的制剂的血胞上质分泌递送(图2D)。使用摄取测定,我们表征了基于CSL3的LNP的细胞进入,以提供对纳米颗粒完成siRNA细胞质递送的机制的洞察。流式细胞术测定,描绘了内吞径的选择性抑制剂存在下CSL3 / siRNA-Alexa488的摄取有助于我们表征摄取过程。该研究表明,Caveolae和Clathrine介导的内吞作用是负责CSL3 / siRNA摄取的主要途径(图3A)。还通过使用siRNA-Alexa647(图3a)通过荧光显微镜证实这些发现。在内吞作用之后,通过酸化通过真空H〜+ - ATP酶严格地控制胚乳和溶酶体的pH。这为pH敏感可切换脂质提供了触发器。在BAF A1,一种已知的真空H〜+ ATP酶的存在下,在BAF A1的存在下实现细胞的转染,以确定真空内部产生的低pH是否参与了从底皮物中释放的siRNA释放。与没有BAF A1的对照细胞相比,用600nm的BAF A1处理具有600nm的BAF A1的细胞导致了完全损失的敲低效率(图3B)。这些数据在用CSL3 / siRNA递送时,确认内体酸化在siRNA的细胞质释放中的重要性。我们报道了使用阳离子可切换脂质的脂质纳米粒子以获得SiRNA的高效递送。最好的配方(基于CSL3基)能够在SiRNA剂量的Hela-GFP模型上显着敲低至1nm,而无需表观细胞毒性。该制剂对肝脏的体内siRNA递送表示很多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号