首页> 外文会议>AIAA/ASCE/AHS/ASC structures, structural dynamics and materials conference;AIAA SciTech forum >High-Fidelity Aerostructural Optimization with Integrated Geometry Parameterization and Mesh Movement
【24h】

High-Fidelity Aerostructural Optimization with Integrated Geometry Parameterization and Mesh Movement

机译:集成几何参数化和网格移动的高保真航空结构优化

获取原文

摘要

This paper extends previous work on the integrated geometry parameterization and mesh movement strategy for aerodynamic shape optimization to high-fidelity aerostructural optimization based on steady analysis. The proposed approach allows for automatic and efficient grid movement resulting in high quality aerodynamic meshes in response to optimization shape changes and structural deflections. It is also integrated with a surface geometry parameterization that analytically describes the outer mold line at any point with a compact yet flexible set of parameters. A novel structural mesh movement algorithm has been developed, so that any jig shape changes described by the geometry parameterization can be consistently translated to the internal structures. Other components of this framework include an aerodynamic solver capable of three-dimensional inviscid and viscous flow analysis and a finite-element code for structural analysis. The aerodynamic and structural analysis modules are coupled to the linear elasticity mesh movement equations in a three-field formulation of the aerostructural problem. Gradients are computed using an augmented three-field coupled adjoint approach. Both the analysis and the adjoint problems are solved using a partitioned block Gauss-Seidel method. Results obtained by aerostructural analysis are validated with static experimental data from the High REynolds Number Aero-Structural Dynamics (HIRENASD) Project. Capabilities of the framework are demonstrated through the analysis of a flexible C-wing that is created from a planar wing using the integrated geometry parameterization and mesh movement. Finally, an in-viscid transonic wing sweep optimization study involving a large number of design variables demonstrates the ability of the methodology to capture the fundamental tradeoff between drag and weight.
机译:本文将基于空气动力学形状优化的集成几何参数化和网格运动策略的先前工作扩展到基于稳定分析的高保真航空结构优化。所提出的方法允许自动且有效的网格运动,从而响应于最佳形状变化和结构变形而产生高质量的空气动力学网格。它还与表面几何形状参数化集成在一起,该参数化具有紧凑而灵活的参数集,可在任何点分析地描述外模线。已经开发了一种新颖的结构网格运动算法,以便通过几何参数化描述的任何夹具形状变化都可以一致地转换为内部结构。该框架的其他组件包括能够进行三维无粘性流和粘性流分析的气动求解器,以及用于结构分析的有限元代码。空气动力学和结构分析模块在航空结构问题的三场公式中耦合到线性弹性网格运动方程。使用增强的三场耦合伴随方法来计算梯度。分析和伴随问题都使用分区块高斯-塞德尔方法来解决。通过航空结构分析获得的结果已通过High REynolds Number航空结构动力学(HIRENASD)项目的静态实验数据进行了验证。通过分析柔性C翼,展示了框架的功能,该C翼是使用集成的几何参数化和网格运动从平面机翼创建的。最后,一项涉及大量设计变量的粘性跨音速机翼扫掠优化研究表明,该方法能够捕获阻力和重量之间的基本权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号