首页> 外文会议>AIAA/ASCE/AHS/ASC structures, structural dynamics and materials conference >High-Fidelity Aerostructural Optimization with Integrated Geometry Parameterization and Mesh Movement
【24h】

High-Fidelity Aerostructural Optimization with Integrated Geometry Parameterization and Mesh Movement

机译:具有集成几何参数化和网格运动的高保真空气结构优化

获取原文

摘要

This paper extends previous work on the integrated geometry parameterization and mesh movement strategy for aerodynamic shape optimization to high-fidelity aerostructural optimization based on steady analysis. The proposed approach allows for automatic and efficient grid movement resulting in high quality aerodynamic meshes in response to optimization shape changes and structural deflections. It is also integrated with a surface geometry parameterization that analytically describes the outer mold line at any point with a compact yet flexible set of parameters. A novel structural mesh movement algorithm has been developed, so that any jig shape changes described by the geometry parameterization can be consistently translated to the internal structures. Other components of this framework include an aerodynamic solver capable of three-dimensional inviscid and viscous flow analysis and a finite-element code for structural analysis. The aerodynamic and structural analysis modules are coupled to the linear elasticity mesh movement equations in a three-field formulation of the aerostructural problem. Gradients are computed using an augmented three-field coupled adjoint approach. Both the analysis and the adjoint problems are solved using a partitioned block Gauss-Seidel method. Results obtained by aerostructural analysis are validated with static experimental data from the High REynolds Number Aero-Structural Dynamics (HIRENASD) Project. Capabilities of the framework are demonstrated through the analysis of a flexible C-wing that is created from a planar wing using the integrated geometry parameterization and mesh movement. Finally, an in-viscid transonic wing sweep optimization study involving a large number of design variables demonstrates the ability of the methodology to capture the fundamental tradeoff between drag and weight.
机译:本文在基于稳态分析的基础上扩展了对空气动力学优化的集成几何参数化和网状运动策略的研究。所提出的方法允许自动高效的网格运动,导致高质量的空气动力学网格响应于优化形状变化和结构偏转。它还集成在表面几何参数化,分析在具有紧凑又灵活的参数集的任何点的外模线。已经开发了一种新型结构网格运动算法,从而可以将几何参数化描述的任何夹具形状改变一致地转换为内部结构。该框架的其他组件包括能够具有三维抗粘性和粘性流动分析的空气动力学求解器以及用于结构分析的有限元码。空气动力学和结构分析模块耦合到气动节问题的三场配方中的线性弹性网格运动方程。使用增强的三场耦合伴随方法计算梯度。使用分区块高声-Seidel方法解决了分析和伴随问题。通过来自高雷诺数航空结构动态(Hirenasd)项目的静态实验数据验证了通过气动节分析获得的结果。通过使用集成几何参数化和网格运动来分析从平面翼创建的柔性C-翼的柔性C-翼来证明框架的能力。最后,涉及大量设计变量的粘性跨音翼扫描优化研究表明了方法论捕获阻力与重量之间的基本权衡的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号