首页> 外文会议>AIAA/SAE/ASEE joint propulsion conference;AIAA propulsion and energy forum >Validation and Rules-of-Thumb for Computational Predictions of Liquid Slosh Dynamics
【24h】

Validation and Rules-of-Thumb for Computational Predictions of Liquid Slosh Dynamics

机译:液体晃荡动力学计算预测的验证和经验法则

获取原文

摘要

During flight, the sloshing of liquid propellant onboard the vehicle can have significant effects on vehicle stability due to the large amount of propellant mass. Because of the stability effect, propellant sloshing is included in the guidance, navigation and control (GNC) analysis to account for the dynamics of the propellant sloshing motion. Typically, the sloshing propellant is simplified either as a mechanical system in the form of a swinging pendulum or as a spring-mass system. In either case, the important parameters governing the dynamics of the system are the mass, natural frequency, and damping ratio. The sloshing parameters of frequency and damping of the slosh system are dependent on the type of propellant, tank geometry, and the liquid level in the tank. The parameters are typically derived from the large amount of experimental data currently available for conventional tank shapes. Unconventional tank shapes, however, require either experimental or computational work to develop new sloshing parameters. Because of the cost of experimental slosh testing, it may be preferred to use computational fluid dynamics (CFD) solvers to predict sloshing dynamics. While previous studies have shown the applicability of CFD to predict sloshing parameters, a consistent methodology to conduct sloshing simulations has not yet been reported. Specifically, there is currently no guidance in the literature for selecting the necessary physics in the simulation, nor is there a suggestion for a starting point of the computational grid resolution. In this paper, the CFD solver FLOW-3D is used to simulate propellant sloshing in oblate spheroidal and cylindrical tanks. The slosh frequency and damping factor predicted with the simulations are validated with experimental data for a range of propellant fill levels and with and without tank baffles. The required physics for sloshing simulations are discussed and rules-of-thumb are presented to provide a starting point for defining the computational grid resolution.
机译:在飞行过程中,由于大量的推进剂质量,液体推进剂在车辆上的晃动可能对车辆的稳定性产生重大影响。由于稳定性的影响,在引导,导航和控制(GNC)分析中包括了推进剂晃动,以说明推进剂晃动的动力学。通常,将晃动推进剂简化为摆动摆形式的机械系统或弹簧质量系统。无论哪种情况,控制系统动力学的重要参数是质量,固有频率和阻尼比。晃荡系统的频率和阻尼的晃荡参数取决于推进剂的类型,储罐的几何形状以及储罐中的液位。这些参数通常是从当前可用于常规储罐形状的大量实验数据中得出的。但是,非常规的储罐形状需要进行实验或计算工作才能开发出新的晃荡参数。由于实验性晃荡测试的成本,可能更希望使用计算流体动力学(CFD)求解器来预测晃荡动力学。虽然先前的研究表明CFD可用于预测晃荡参数,但尚未报道进行晃荡模拟的一致方法。具体而言,目前在文献中没有关于在仿真中选择必要的物理的指导,也没有建议计算网格分辨率的起点。在本文中,CFD求解器FLOW-3D用于模拟扁球形和圆柱形罐中的推进剂晃动。通过模拟预测的晃荡频率和阻尼系数已通过一系列推进剂填充水平(带和不带坦克挡板)的实验数据进行了验证。讨论了晃荡模拟所需的物理原理,并提出了经验法则,为定义计算网格分辨率提供了起点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号