首页> 外文会议>Annual International Conference of the IEEE Engineering in Medicine and Biology Society >Electrostatic study of Alanine mutational effects on transcription: application to GATA-3:DNA interaction complex
【24h】

Electrostatic study of Alanine mutational effects on transcription: application to GATA-3:DNA interaction complex

机译:丙氨酸突变对转录的静电研究:在GATA-3:DNA相互作用复合体中的应用

获取原文

摘要

Protein-DNA interaction is of fundamental importance in molecular biology, playing roles in functions as diverse as DNA transcription, DNA structure formation, and DNA repair. Protein-DNA association is also important in medicine; understanding Protein-DNA binding kinetics can assist in identifying disease root causes which can contribute to drug development. In this perspective, this work focuses on the transcription process by the GATA Transcription Factor (TF). GATA TF binds to DNA promoter region represented by `G,A,T,A' nucleotides sequence, and initiates transcription of target genes. When proper regulation fails due to some mutations on the GATA TF protein sequence or on the DNA promoter sequence (weak promoter), deregulation of the target genes might lead to various disorders. In this study, we aim to understand the electrostatic mechanism behind GATA TF and DNA promoter interactions, in order to predict Protein-DNA binding in the presence of mutations, while elaborating on non-covalent binding kinetics. To generate a family of mutants for the GATA:DNA complex, we replaced every charged amino acid, one at a time, with a neutral amino acid like Alanine (Ala). We then applied Poisson-Boltzmann electrostatic calculations feeding into free energy calculations, for each mutation. These calculations delineate the contribution to binding from each Ala-replaced amino acid in the GATA:DNA interaction. After analyzing the obtained data in view of a two-step model, we are able to identify potential key amino acids in binding. Finally, we applied the model to GATA-3:DNA (crystal structure with PDB-ID: 3DFV) binding complex and validated it against experimental results from the literature.
机译:蛋白质-DNA相互作用在分子生物学中至关重要,在诸如DNA转录,DNA结构形成和DNA修复等多种功能中发挥作用。蛋白质与DNA的结合在医学中也很重要。了解蛋白质与DNA的结合动力学可以帮助确定可能导致药物开发的疾病根本原因。从这个角度来看,这项工作着重于GATA转录因子(TF)的转录过程。 GATA TF与“ G,A,T,A”核苷酸序列代表的DNA启动子区域结合,并启动靶基因的转录。当由于GATA TF蛋白序列或DNA启动子序列(弱启动子)上的某些突变而导致适当的调节失败时,靶基因的失调可能导致各种疾病。在这项研究中,我们旨在了解GATA TF和DNA启动子相互作用背后的静电机制,以便在存在突变的同时预测非共价结合动力学的同时预测蛋白质与DNA的结合。为了生成GATA:DNA复合体的突变体家族,我们一次用中性氨基酸(如丙氨酸(Ala))替换了每个带电荷的氨基酸。然后,我们将Poisson-Boltzmann静电计算应用到每个突变的自由能计算中。这些计算描述了在GATA:DNA相互作用中每个Ala取代的氨基酸对结合的贡献。在通过两步模型分析获得的数据之后,我们能够确定结合中潜在的关键氨基酸。最后,我们将该模型应用于GATA-3:DNA(具有PDB-ID:3DFV的晶体结构)结合复合物,并根据文献的实验结果对其进行了验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号