首页> 外文会议>IEEE International Conference on Machine Learning and Applications >Lower Bounds for Adversarially Robust PAC Learning under Evasion and Hybrid Attacks
【24h】

Lower Bounds for Adversarially Robust PAC Learning under Evasion and Hybrid Attacks

机译:在逃避和混合攻击下对抗性强大PAC学习的下限

获取原文

摘要

In this work, we study probably approximately correct (PAC) learning under general perturbation-based adversarial attacks. In the most basic setting, referred to as an evasion attack, the adversary’s goal is to misclassify an honestly sampled point x by adversarially perturbing it into $ilde x$, i.e., $h(ilde x) e c(ilde x)$ where c is the ground truth concept and h is the learned hypothesis. The only limitation on the adversary is that $ilde x$ is not "too far" from x, controlled by a metric measure.We first prove that for many theoretically natural input spaces of high dimension n (e.g., isotropic Gaussian in dimension n under ℓ2 perturbations), if the adversary is allowed to apply up to a sublinear amount of perturbations in the expected norm, PAC learning requires sample complexity that is exponential in the data dimension n. We then formalize hybrid attacks in which the evasion attack is preceded by a poisoning attack in which a poisoning phase is followed by specific evasion attacks. Special forms of hybrid attacks include so-called "backdoor attacks" but here we focus on the general setting in which adversary’s evasion attack is only controlled by a pre-specified amount of perturbation based on data dimension and aim to misclassifying the perturbed instances. We show that PAC learning is sometimes impossible under such hybrid attacks, while it is possible without the attack (e.g., due to the bounded VC dimension).
机译:在这项工作中,我们在一般扰动的对抗攻击下,我们研究大致正确(PAC)学习。在最基本的环境中,被称为逃避攻击,对手的目标是通过对抗 tilde x $,即$ h( tilde x) ne c( tilde)来错误地将诚实地采样的点x错误分类。 x)$ C,其中C是地面真理概念,H是学习的假设。对手的唯一限制是,由公制措施控制的$ tilde x $不是“太远”。我们首先证明,对于高尺寸N的许多理论上自然输入空间(例如,在维度的各向同性高斯在ℓ下 2 扰动),如果允许对手在预期规范中施加到副扰动的扰动,PAC学习需要在数据维度n下是指数的样本复杂性。然后,我们正规化混合攻击,其中逃避攻击前面的中毒攻击,其中中毒阶段之后是特定的逃避攻击。特殊形式的混合攻击包括所谓的“后门攻击”,但在这里,我们专注于对抗的逃避攻击仅通过基于数据维度的预先指定的扰动量来控制并旨在错误分类扰动的情况。我们表明,在这种混合攻击下,PAC学习有时是不可能的,而在没有攻击的情况下,可以在没有攻击(例如,由于有界VC维度)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号