首页> 外文期刊>IEEE transactions on network and service management >Deep Reinforcement Adversarial Learning Against Botnet Evasion Attacks
【24h】

Deep Reinforcement Adversarial Learning Against Botnet Evasion Attacks

机译:深增强对抗僵局逃避攻击

获取原文
获取原文并翻译 | 示例

摘要

As cybersecurity detectors increasingly rely on machine learning mechanisms, attacks to these defenses escalate as well. Supervised classifiers are prone to adversarial evasion, and existing countermeasures suffer from many limitations. Most solutions degrade performance in the absence of adversarial perturbations; they are unable to face novel attack variants; they are applicable only to specific machine learning algorithms. We propose the first framework that can protect botnet detectors from adversarial attacks through deep reinforcement learning mechanisms. It automatically generates realistic attack samples that can evade detection, and it uses these samples to produce an augmented training set for producing hardened detectors. In such a way, we obtain more resilient detectors that can work even against unforeseen evasion attacks with the great merit of not penalizing their performance in the absence of specific attacks. We validate our proposal through an extensive experimental campaign that considers multiple machine learning algorithms and public datasets. The results highlight the improvements of the proposed solution over the state-of-the-art. Our method paves the way to novel and more robust cybersecurity detectors based on machine learning applied to network traffic analytics.
机译:随着网络安全探测器越来越依赖机器学习机制,对这些防御的攻击也会升级。监督分类器易于对抗侵犯,现有对策遭受了许多限制。大多数解决方案在没有对抗性扰动的情况下降低了性能;他们无法面对新的攻击变体;它们仅适用于特定机器学习算法。我们提出了通过深度加强学习机制来保护僵尸网络探测器可以保护僵尸网络探测器的框架。它自动生成可以逃避检测的现实攻击样本,并且它使用这些样本来产生用于生产硬化探测器的增强训练集。以这样的方式,我们获得更多的弹性探测器,即使在没有特定攻击的情况下没有惩罚其性能的巨大优点,即使在不可预见的逃避袭击中也可以工作。我们通过广泛的实验活动验证我们的提案,该活动考虑多个机器学习算法和公共数据集。结果突出了拟议解决方案的改进。我们的方法铺平了基于应用于网络流量分析的机器学习的新颖和更坚固的网络安全探测方式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号