首页> 外文会议>International Conference on Communications and Networking in China >Feature classification for the satellite modulation based on sparse coding algorithm
【24h】

Feature classification for the satellite modulation based on sparse coding algorithm

机译:基于稀疏编码算法的卫星调制特征分类

获取原文

摘要

In order to improve the characteristics for satellite data expression ability, it is proposed sparse coding with over complete bases, to induce the high dimensional feature vectors form down to up pattern, then to accurately express the original high-dimensional features with very few over complete basis vectors. From top-down semi supervised learning characteristics, to project high dimensional feature to low dimensional space, in order to verify the similarity of coding of the training data, then to express the characteristics of input satellite data. The encoder needs as much as possible reconstruction for the input multi dimensional, and the find the main ingredients for representing the original information about input data. Therefore, the over complete is not only by the coefficient of input data to determine characteristics, but also by the dimensional space. In order to verify the performance of the sparse coding algorithm, using the sparse coding algorithm is to identify the 6 kinds of commonly used digital modulation signal: 4ASK, 4FSK, 4PSK, MSK, 16QAM, ¿¿/4QPSK. The performance of correct modulation recognition rate is higher stability. The overall recognition of 6 kinds of modulation rate of SNR is higher, not less than 0dB 99%.
机译:为了提高卫星数据表达能力的特征,提出了基于超完整碱基的稀疏编码,从高到低的模式归纳出高维特征向量,然后以极少的超完整准确地表达原始的高维特征。基本向量。从上到下的半监督学习特征,将高维特征投影到低维空间,以验证训练数据编码的相似性,然后表达输入卫星数据的特征。编码器需要对输入的多维数据进行尽可能多的重构,并且找到代表有关输入数据的原始信息的主要成分。因此,过度完成不仅取决于输入数据的系数来确定特性,还取决于维度空间。为了验证稀疏编码算法的性能,使用稀疏编码算法是要识别6种常用的数字调制信号:4ASK,4FSK,4PSK,MSK,16QAM,?? / 4QPSK。正确的调制识别率的性能是较高的稳定性。 SNR的6种调制率的整体识别度较高,不低于0dB达到99%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号