首页> 外文会议>Conference on Ultrafast Nonlinear Imaging and Spectroscopy >Multiscale Diffusion of a Molecular Probe in a Crowded Environment: A Concept
【24h】

Multiscale Diffusion of a Molecular Probe in a Crowded Environment: A Concept

机译:拥挤环境中分子探针的多尺度扩散:一个概念

获取原文

摘要

Living cells are crowded with macromolecules and organelles. Yet, it is not fully understood how macromolecular crowding affects the myriad of biochemical reactions, transport and the structural stability of biomolecules that are essential to cellular function and survival. These molecular processes, with or without electrostatic interactions, in living cells are therefore expected to be distinct from those carried out in test tube in dilute solutions where excluded volumes are absent. Thus there is an urgent need to understand the macromolecular crowding effects on cellular and molecular biophysics towards quantitative cell biology. In this report, we investigated how biomimetic crowding affects both the rotational and translation diffusion of a small probe (rhodamine green, RhG). For biomimetic crowding agents, we used Ficoll-70 (synthetic polymer), bovine serum albumin and ovalbumin (proteins) at various concentrations in a buffer at room temperature. As a control, we carried out similar measurements on glycerol-enriched buffer as an environment with homogeneous viscosity as a function of glycerol concentration. The corresponding bulk viscosity was measured independently to test the validity of the Stokes-Einstein model of a diffusing species undergoing a random walk. For rotational diffusion (ps-ns time scale), we used time-resolved anisotropy measurements to examine potential binding of RhG as a function of the crowding agents (surface structure and size). For translational diffusion (μs-s time scale), we used fluorescence correlation spectroscopy for single-molecule fluctuation analysis. Our results allow us to examine the diffusion model of a molecular probe in crowded environments as a function of concentration, length scale, homogeneous versus heterogeneous viscosity, size and surface structures. These biomimetic crowding studies, using non-invasive fluorescence spectroscopy methods, represent an important step towards understanding cellular biophysics and quantitative cell biology.
机译:活细胞中挤满了大分子和细胞器。然而,尚未完全理解大分子拥挤如何影响无数的生化反应,转运以及对细胞功能和存活必不可少的生物分子的结构稳定性。因此,预期在活细胞中具有或没有静电相互作用的这些分子过程与在试管中在没有排除体积的稀溶液中进行的那些过程是不同的。因此,迫切需要了解大分子拥挤对细胞和分子生物物理学朝着定量细胞生物学的影响。在此报告中,我们研究了仿生拥挤如何影响小探针(若丹明绿,RhG)的旋转和平移扩散。对于仿生拥挤剂,我们在室温下在缓冲液中使用了不同浓度的Ficoll-70(合成聚合物),牛血清白蛋白和卵清蛋白(蛋白质)。作为对照,我们在甘油均质粘度随甘油浓度变化的环境下,对富含甘油的缓冲液进行了类似的测量。独立测量相应的体积粘度,以测试经历随机游走的扩散物种的斯托克斯-爱因斯坦模型的有效性。对于旋转扩散(ps-ns时间标度),我们使用时间分辨的各向异性测量来检查RhG潜在的结合作为拥挤剂(表面结构和大小)的函数。对于平移扩散(μs-s时间标度),我们使用荧光相关光谱法进行单分子波动分析。我们的结果使我们能够检查分子探针在拥挤环境中的扩散模型,该模型是浓度,长度比例,均相与异相粘度,尺寸和表面结构的函数。这些使用非侵入式荧光光谱法进行的仿生拥挤研究代表了朝着了解细胞生物物理学和定量细胞生物学迈出的重要一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号