首页> 外文会议>International Conference on Domain Decomposition Methods >Inexact BDDC Methods for the Cardiac Bidomain Model
【24h】

Inexact BDDC Methods for the Cardiac Bidomain Model

机译:心性竞赏模型的不精确BDDC方法

获取原文

摘要

The cardiac Bidomain model consists in a reaction-diffusion system of PDEs for the intra- and extra-cellular cardiac potentials coupled with a nonlinear system of ODEs accounting for the cellular model of ionic currents. Fully implicit methods in time have been considered in a few studies, see e.g. [16] and references therein. As in most of previous work (see [18] for a review), in this study we consider an Implicit-Explicit operator splitting technique in order to separate the part of the system of PDEs describing diffusion of cardiac potentials from the large and stiff nonlinear system of ODEs accounting for the reaction terms. The resulting space-time discretization of the so-called parabolic-parabolic Bidomain operator leads to a large, sparse, symmetric positive semidefinite linear system which must be solved at each time step of a cardiac beat simulation using a Krylov subspace method. Given a component by component finite element discretization of the cardiac potentials, the coefficient matrix of the linear system to be solved is K=[A_i 0 0 A_e]+X/(δ_t)[(M-M/(-M M))] (1) where δ_t is the value of the time step and X the membrane capacitance per unit volume; M and A_(i,e) are the mass and stiffness matrices with entries {M}_(rs)=∫_Ω Φ_h~rΦ_h~s, {A_(i,e)}_(rs)=∫_ΩD_(i,e)▽_(Φ_h~r)·▽_(Φ_h~s), where for sake of simplicity the same finite element basis {Φ_h~j} is considered for each cardiac potential. Anisotropic conductivity tensors D_i(x) and D_e(x) model propagation of electrical signals with orthotropic anisotropy D_(i,e)(x)=3 ∑ j-1σ_i~(i,e)(x)a_j(x)a_j(x)~T, with σ_j~(i,e)(x) > 0 the conductivity coefficient of the intra- and extra-cellular media measured along the orthonormal triplet {a_j(x)}_(j=1)~3, describing cardiac fiber rotation. For additional details on the operator splitting technique adopted and the diffusion tensors, see.
机译:心脏等域模型在于PDE的反应扩散系统组成,用于耦合与核对离子电流蜂窝模型的非线性杂志的内部杂物系统的和室外心脏势的反应扩散系统。在几项研究中考虑了完全隐含的方法,参见例如[16]和其中引用。与以前的大多数工作(见[18]进行审查),在本研究中,我们考虑隐式显式操作员分裂技术,以分离描述心电图扩散的PDE系统的部分来自大型和僵硬的非线性的余量系统核算反应条款。所产生的抛物面 - 抛物线族蛋白操作员的停留空间离散化导致大,稀疏对称的正半纤维线性线性系统,其必须使用Krylov子空间方法在心脏节拍仿真的每一步中解决。给定由组件有限元的组件的心电势的离散化,待解决的线性系统的系数矩阵是k = [a_i 0 0a_e] + x /(Δ_t)[(mm /(mm))](1 [其中Δ_t是每单位体积的时间步骤和x膜电容的值; m和a_(i,e)是具有条目的质量和刚度矩阵{m} _(rs)=∫_Ωφ_h〜rφ_h〜s,{a_(i,e)} _(rs)=∫_ωd_(i, e)▽_(φ_h〜r)·▽_(φ_h〜s),为了简单起见,对于每个心脏潜力,考虑了相同的有限元基础{φ_h~j}。各向异性电导率张于D_i(x)和d_e(x)模型电信信号与正交各向异性d_(i,e)(x)=3σj-1σ_i〜(i,e)(x)a_j(x)a_j( x)〜t,用Σ_j〜(i,e)(x)> 0沿正交三态{a_j(x)} _(j = 1)〜3测量的内部和幼儿介质的导电系数{a_j = 1)〜3,描述心脏纤维旋转。有关所采用的操作员分裂技术的其他详细信息以及扩散张量,请参阅。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号