首页> 外文会议>International Conference on Domain Decomposition Methods >Inexact BDDC Methods for the Cardiac Bidomain Model
【24h】

Inexact BDDC Methods for the Cardiac Bidomain Model

机译:心脏双域模型的不精确BDDC方法

获取原文

摘要

The cardiac Bidomain model consists in a reaction-diffusion system of PDEs for the intra- and extra-cellular cardiac potentials coupled with a nonlinear system of ODEs accounting for the cellular model of ionic currents. Fully implicit methods in time have been considered in a few studies, see e.g. [16] and references therein. As in most of previous work (see [18] for a review), in this study we consider an Implicit-Explicit operator splitting technique in order to separate the part of the system of PDEs describing diffusion of cardiac potentials from the large and stiff nonlinear system of ODEs accounting for the reaction terms. The resulting space-time discretization of the so-called parabolic-parabolic Bidomain operator leads to a large, sparse, symmetric positive semidefinite linear system which must be solved at each time step of a cardiac beat simulation using a Krylov subspace method. Given a component by component finite element discretization of the cardiac potentials, the coefficient matrix of the linear system to be solved is K=[A_i 0 0 A_e]+X/(δ_t)[(M-M/(-M M))] (1) where δ_t is the value of the time step and X the membrane capacitance per unit volume; M and A_(i,e) are the mass and stiffness matrices with entries {M}_(rs)=∫_Ω Φ_h~rΦ_h~s, {A_(i,e)}_(rs)=∫_ΩD_(i,e)▽_(Φ_h~r)·▽_(Φ_h~s), where for sake of simplicity the same finite element basis {Φ_h~j} is considered for each cardiac potential. Anisotropic conductivity tensors D_i(x) and D_e(x) model propagation of electrical signals with orthotropic anisotropy D_(i,e)(x)=3 ∑ j-1σ_i~(i,e)(x)a_j(x)a_j(x)~T, with σ_j~(i,e)(x) > 0 the conductivity coefficient of the intra- and extra-cellular media measured along the orthonormal triplet {a_j(x)}_(j=1)~3, describing cardiac fiber rotation. For additional details on the operator splitting technique adopted and the diffusion tensors, see.
机译:心脏双域模型包含用于细胞内和细胞外心脏电位的PDE的反应扩散系统,以及考虑离子电流的细胞模型的ODE非线性系统。在一些研究中已经考虑了时间上的完全隐式方法,请参见例如[16]及其中的参考文献。像以前的大多数工作一样(请参阅[18]进行回顾),在本研究中,我们考虑使用“隐式-显式”运算符拆分技术,以便将描述心脏电势扩散的PDE系统部分与大而刚性的非线性系统分开。 ODE系统负责计算反应条件。所谓的抛物线-抛物线双域算子的时空离散导致了大型的,稀疏的,对称的正半定线性系统,必须在使用Krylov子空间方法的心跳模拟的每个时间步上对其进行求解。给定心脏电势的逐分量有限元离散化,要求解的线性系统的系数矩阵为K = [A_i 0 0 A_e] + X /(δ_t)[(MM /(-MM))](1 ),其中δ_t是时间步长的值,X是每单位体积的膜电容; M和A_(i,e)是质量和刚度矩阵,条目为{M} _(rs)=∫_ΩΦ_h〜rΦ_h〜s,{A_(i,e)} _(rs)=∫_ΩD_(i, e)▽_(Φ_h〜r)·▽_(Φ_h〜s),为简单起见,对每个心脏电势考虑相同的有限元基础{Φ_h〜j}。各向异性电导张量D_i(x)和D_e(x)用正交各向异性D_(i,e)(x)= 3 ∑j-1σ_i〜(i,e)(x)a_j(x)a_j( x)〜T,且σ_j〜(i,e)(x)> 0时,沿正交三元组{a_j(x)} _(j = 1)〜3测得的细胞内和细胞外介质的电导系数,描述心脏纤维旋转。有关采用的算子拆分技术和扩散张量的更多详细信息,请参见。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号