首页> 外文会议>IEEE Electronics Packaging Technology Conference >Growth behavior and physical response of Al-Cu intermetallic compounds
【24h】

Growth behavior and physical response of Al-Cu intermetallic compounds

机译:Al-Cu金属间化合物的生长行为和物理响应

获取原文

摘要

This review covers recent investigations and concludes our findings for the growth of Cu/Al intermetallic compounds (IMC). [1, 2] The corresponding copper-aluminum interfaces were either established by a physical vapor deposited (PVD) Cu layer on a PVD aluminum pad or a Cu thermosonic nailhead bond on a PVD aluminum-based pad metallization. The identification, growth kinetics and mechanical strength of the different Al-Cu intermetallic compounds have been investigated. The annealing matrix of these investigations covered the temperature range from 150-300 °C for 25-2000 h. The identification of the Al-Cu phases utilizes X-ray diffraction analysis (XRD), selected area diffraction pattern (SAD) and scanning electron microscopy (SEM) & energy dispersive X-ray spectroscopy (EDX). The main three IMC phases AlCu, AlCu and AlCu were identified over the whole temperature range, whereas two additional phases (AlCu, AlCu) contribute to the total IMC growth at temperatures above 200 °C. Individual diffusion constants D and activation energies E of 1.0 eV for AlCu and AlCu, 1.2 eV for AlCu and 1.3 eV for the total IMC growth have been obtained. As the two slow growing phases AlCu and AlCu were not observed below 200 °C, lower activation energies for the total IMC stack were expected and have been measured to be in the range of 1.05-1.1 eV for thin film and bonded samples for temperatures below 200° C. Therefore it is recommended to use these lower activation energies for lifetime predictions in the typical regime of device application temperatures. The impact of IMC thickness and annealing conditions on bond strength was studied using ball shear test. The test results did not show any hints on interface strength degradation across the full experiment- l matrix even for the groups where Al was already fully consumed, in case of a tungsten barrier or adhesion layer between Al metallization and silicon-based dielectrics was used.
机译:这篇综述涵盖了最近的研究,并总结了我们对Cu / Al金属间化合物(IMC)生长的发现。 [1,2]相应的铜铝界面是通过在PVD铝焊盘上的物理气相沉积(PVD)Cu层或在PVD铝基焊盘金属化层上的Cu热超声钉头结合而建立的。研究了不同Al-Cu金属间化合物的鉴定,生长动力学和机械强度。这些研究的退火矩阵涵盖了150-300°C的温度范围25-2000 h。 Al-Cu相的鉴定利用X射线衍射分析(XRD),选定区域衍射图(SAD)以及扫描电子显微镜(SEM)和能量色散X射线光谱(EDX)。在整个温度范围内,确定了IMC的主要三个相AlCu,AlCu和AlCu,而另外两个相(AlCu,AlCu)在200°C以上的温度下促进了IMC的总生长。对于AlCu和AlCu,单独的扩散常数D和活化能E为1.0 eV,对于AlCu为1.2 eV,对于总IMC生长为1.3 eV。由于在200°C以下未观察到两个慢速生长相AlCu和AlCu,因此预计整个IMC堆栈的活化能较低,并且对于温度低于25°C的薄膜和粘结样品,其活化能在1.05-1.1 eV的范围内200°C。因此,在典型的设备应用温度范围内,建议将这些较低的活化能用于寿命预测。使用球剪切试验研究了IMC厚度和退火条件对粘结强度的影响。即使在铝金属化层和硅基介电层之间使用钨阻挡层或粘附层的情况下,即使对于已经完全消耗掉铝的组,测试结果也没有显示出整个实验矩阵上的界面强度降低的任何迹象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号