首页> 外文会议>IEEE International Symposium on Biomedical Imaging >A Multimodal Learning Framework to Study Varying Information Complexity in Structural and Functional Sub-Domains in Schizophrenia
【24h】

A Multimodal Learning Framework to Study Varying Information Complexity in Structural and Functional Sub-Domains in Schizophrenia

机译:一种多模式学习框架,用于研究精神分裂症结构和功能性亚域中的不同信息复杂性

获取原文

摘要

Approaches involving the use of learning architectures on multimodal neuroimaging data tend to assume uniformity in the way information is stored in various sub-domains of the brain, thus not catering to the differences across functional and structural sub-domains. We introduce a learning framework to effectively incorporate multimodal features using structural and functional MRI data from a dataset of schizophrenia patients and controls, accounting for and exploiting the heterogeneity in the sub-domains of the brain. We analyze these sub-domains in terms of their functional interactions (i.e. within and between network connectivity) and structural properties (gray matter volume). By using Bayesian optimization on a search space of flexible multimodal architectures with multiple branches, we demonstrate that the discriminatory information from structural and functional sub-domains can be better recovered if the complexity of subspace structure in the model can be tuned to reflect the extent of non-linearity with which each sub-domain encodes the information. Our repeated cross-validated results from a schizophrenia classification problem show that for better classification and interpretation, sub-domains known for their role or disruption in Schizophrenia require more sophisticated subspace structure in the model compared to others. Our work emphasizes on the requirement to create multimodal frameworks that can adapt based on differences in the way various sub-domains of the brain encode discriminatory information. This is important to not only have better-performing prediction models but also to reveal sub-domains associated with the outcome at hand.
机译:涉及在多模式神经影像数据上使用学习架构的方法倾向于以信息存储在大脑的各种子域中的方式均匀,因此不迎合功能和结构子域的差异。我们介绍了一种学习框架,以有效地使用来自精神分裂症患者的数据集和对照组的结构和功能MRI数据的多模胞特征,占大脑子域的异质性。我们以功能交互(即网络连接内部和网络连接之间)和结构性(灰质体积)分析这些子域。通过在具有多个分支的灵活多模式架构的搜索空间上使用贝叶斯型优化,我们证明可以更好地恢复来自结构和功能子域的歧视信息如果可以调整模型中子空间结构的复杂性以反映的程度每个子域编码信息的非线性。我们来自精神分裂症分类问题的反复交叉验证结果表明,为了更好的分类和解释,与他人相比,他们在精神分裂症中发挥作用或破坏的子结构域需要更复杂的子空间结构。我们的工作强调了创建可以基于大脑编码歧视信息的各个子域的差异来适应的多模式框架的要求。这对于不仅具有更好的性能预测模型来说,而且还非常重要,而且还是揭示与手头结果相关的子域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号