首页> 外文会议>International Vacuum Nanoelectronics Conference >Time- and Area-Resolved Investigation of Field-Induced Electron Emission from Nanocarbon Films
【24h】

Time- and Area-Resolved Investigation of Field-Induced Electron Emission from Nanocarbon Films

机译:从纳米碳膜的现场诱导电子发射的时间和区域解决的调查

获取原文

摘要

In our previous work [1,2], we observed complicated behavior of field-induced electron emission from nanocarbon films in non-stationary (pulsed) electric field, including strong temporal dispersion with characteristic times as large as about 10μs. At the investigated materials, the emission current is produced at numerous low-aspect-ratio active centers. These centers can be expected to interact - for instance, via current-induced voltage drop at nanocarbon grains. Thus, the emitter surface represents a kind of 2d medium with spatial and temporal dispersion, principally suitable for development of oscillations and waves. Detection and characterization of these oscillatory phenomena can give new information on properties, performance and interaction of efficient emission centers. To investigate fluctuations of emission pattern with area resolution, we use the apparatus schematically showed in Fig. 1. Anode 4 and cathode guard electrode 3 form 2.5 mm-wide quasi-planar field gap in a vacuum chamber pumped typically to 10{sup}(-7) Torr. The studied emitting structure 2 is placed behind an orifice in the guard electrode. Heater 1 serves for conditioning of the sample prior to its investigation. Electrons extracted from the sample pass through a 2 mm-diameter diaphragm in the anode to strike the phosphor screen 5 deposited at a polished end of light-guide bunch 6. Emission images can be observed at the other end of the bunch, outside of the vacuum chamber. To measure a signal representing emission current density at a selected spatial position, the light flux from the corresponding image spot is collected with an optic fiber probe 7 and then directed to a photomultiplier 8. The present system includes four such data channels. Usually, four probes are arranged in quadratic or linear array with 100-150μm period, and whole array is scanned across the image to obtain measurable signal magnitudes at all data inputs.
机译:在我们以前的工作[1,2],我们观察到在非固定的(脉动的)电场从纳米碳薄膜场致电子发射的复杂行为,包括与特征倍大约10μs的强时间分散。在研究的材料,发射电流在大量的低纵横比的活性中心生产。这些中心可以预计到互动 - 例如,通过在碳纳米颗粒电流引起的电压降。因此,发射极表面代表了一种2D介质的与空间和时间分散,主要适合用于振荡和波的发展。检测与这些振荡现象表征可以给高效发射中心的特性,性能和互动的新信息。调查发射图案的波动与区域的分辨率,我们使用图示意性地显示了装置1,阳极4和阴极保护电极3形成2.5毫米宽准平面在真空室场间隙典型地泵送至10 {SUP}( -7)乇。所研究的发光结构2被放置在保护电极上的孔的后面。加热器1个用于样品之前,其调查的调理。从样品穿过一个2mm直径膜片在阳极提取电子撞击保藏在一堆6.发射图像可以在束的另一端可以观察到光导的抛光端荧光屏5的外真空室中。为了测量在选定的空间位置的信号表示发射电流密度,从对应的图像光斑的光束被收集与光纤探头7,然后引导到一个光电倍增8.本系统包括四个这样的数据信道。通常,4个探针被布置在正方形或线性阵列与100-150μm周期,整个阵列在图像扫描在所有的数据输入,以获得可测量的信号的量值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号