首页> 外文会议>Annual SEMI Advanced Semiconductor Manufacturing Conference >Alignment solutions on FBEOL layers using ASML scanners: AEPM: Advanced equipment processes and materials
【24h】

Alignment solutions on FBEOL layers using ASML scanners: AEPM: Advanced equipment processes and materials

机译:使用ASML扫描仪对对齐解决方案:AEPM:APM:高级设备流程和材料

获取原文

摘要

Wafers at FBEOL layers traditionally have higher stress and larger alignment signal variability. ASML's ATHENA sensor based scanners, commonly used to expose FBEOL layers, have large spot size (~700um). Hence ATHENA captures the signal from larger area compared to the alignment marks which are typically ~40um wide. This results in higher noise in the alignment signal and if the surrounding areas contain periodic product structures, they interfere with the alignment signal causing either alignment rejects or in some cases-misalignment. SMASH alignment sensors with smaller spot size (~40um) and two additional probe lasers have been used to improve alignment quality and hence reduce mark/wafer rejects. However, due to the process variability, alignment issues still persist. For example, the aluminum grain size, alignment mark trench deposition uniformity, alignment mark asymmetry and variation in stack thicknesses all contribute to the alignment signal variability even within a single wafer. Here, a solution using SMASH sensor that involves designing new alignment marks to ensure conformal coating is proposed. Also new techniques and controls during coarse wafer alignment (COWA) and fine wafer alignment (FIWA) including extra controls over wafer shape parameters, longer scan lengths on alignment marks and weighted light source between Far Infra-Red laser (FIR) and Near Infra-Red (NIR) for alignment are presented. All the above mentioned techniques, when implemented, have reduced the wafer alignment reject rate from around 36% to less than 0.1%. Future work includes mark validation based on the signal response from the various laser colors. Finally, process monitoring using alignment parameters is explored.
机译:FBEOL层的晶片传统上具有更高的应力和更大的对准信号变异性。 ASML的ASMATHEA传感器基于扫描仪,通常用于公开FBEOL层,具有大的斑点尺寸(〜700um)。因此,与通常宽的对准标记相比,雅典娜捕获来自较大面积的信号。这导致对准信号中的噪声较高,并且如果周围区域包含周期性产品结构,则它们干扰导致对准拒绝或在某些情况下的对准信号。具有较小斑点(〜40um)和两个附加探针激光器的粉碎对准传感器已被用于改善对准质量,从而减少标记/晶片拒绝。但是,由于过程变异性,对齐问题仍然存在。例如,即使在单个晶片内,铝晶粒尺寸,对准沟槽沉积均匀性,对准标记不对称性和堆叠厚度的变化也会有助于对准信号变异性。这里,使用粉碎传感器的解决方案,涉及设计新的对准标记以确保保形涂层。还包括粗晶片对准(豇豆)和细晶片对准(FIWA)期间的新技术和控制,包括诸如晶片形状参数上的额外控制,在远程红外激光(FIR)之间的对准标记和加权光源上的较长扫描长度和加权光源。提出了对准的红色(NIR)。当实现时,所有上述技术都将晶片对准率降低到大约36×%至小于0.1%。未来的工作包括基于来自各种激光颜色的信号响应的标记验证。最后,探讨了使用对齐参数的过程监控。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号