首页> 外文会议>Annual SEMI Advanced Semiconductor Manufacturing Conference >Alignment solutions on FBEOL layers using ASML scanners: AEPM: Advanced equipment processes and materials
【24h】

Alignment solutions on FBEOL layers using ASML scanners: AEPM: Advanced equipment processes and materials

机译:使用ASML扫描仪在FBEOL层上的对准解决方案:AEPM:先进的设备工艺和材料

获取原文

摘要

Wafers at FBEOL layers traditionally have higher stress and larger alignment signal variability. ASML's ATHENA sensor based scanners, commonly used to expose FBEOL layers, have large spot size (~700um). Hence ATHENA captures the signal from larger area compared to the alignment marks which are typically ~40um wide. This results in higher noise in the alignment signal and if the surrounding areas contain periodic product structures, they interfere with the alignment signal causing either alignment rejects or in some cases-misalignment. SMASH alignment sensors with smaller spot size (~40um) and two additional probe lasers have been used to improve alignment quality and hence reduce mark/wafer rejects. However, due to the process variability, alignment issues still persist. For example, the aluminum grain size, alignment mark trench deposition uniformity, alignment mark asymmetry and variation in stack thicknesses all contribute to the alignment signal variability even within a single wafer. Here, a solution using SMASH sensor that involves designing new alignment marks to ensure conformal coating is proposed. Also new techniques and controls during coarse wafer alignment (COWA) and fine wafer alignment (FIWA) including extra controls over wafer shape parameters, longer scan lengths on alignment marks and weighted light source between Far Infra-Red laser (FIR) and Near Infra-Red (NIR) for alignment are presented. All the above mentioned techniques, when implemented, have reduced the wafer alignment reject rate from around 36% to less than 0.1%. Future work includes mark validation based on the signal response from the various laser colors. Finally, process monitoring using alignment parameters is explored.
机译:传统上,FBEOL层的晶圆具有更高的应力和更大的对准信号可变性。 ASML的基于ATHENA传感器的扫描仪通常用于曝光FBEOL层,具有较大的光斑大小(约700um)。因此,与通常约40um宽的对准标记相比,ATHENA可以从更大的区域捕获信号。这会导致对齐信号中出现更高的噪声,并且如果周围区域包含周期性的乘积结构,则它们会干扰对齐信号,从而导致对齐不良或在某些情况下出现对齐错误。具有较小光斑尺寸(约40um)的SMASH对准传感器和两个附加的探测激光器已用于提高对准质量,从而减少标记/晶圆的废品率。但是,由于过程的可变性,对齐问题仍然存在。例如,即使在单个晶片内,铝的晶粒尺寸,对准标记沟槽沉积的均匀性,对准标记的不对称性和堆叠厚度的变化也都导致对准信号的可变性。在此,提出了一种使用SMASH传感器的解决方案,该解决方案涉及设计新的对准标记以确保保形涂层。以及在粗晶圆对准(COWA)和细晶圆对准(FIWA)期间的新技术和控件,包括对晶圆形状参数的额外控制,对准标记上更长的扫描长度以及远红外激光(FIR)和近红外之间的加权光源呈现用于对齐的红色(NIR)。当实施上述所有上述技术时,晶圆对准不良率已从约36%降低至小于0.1%。未来的工作包括基于来自各种激光颜色的信号响应进行标记验证。最后,探讨了使用对齐参数进行过程监控。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号