【24h】

Set-membership PHD filter

机译:SET-MEMAINSIP PHD过滤器

获取原文

摘要

The paper proposes a novel Probability Hypothesis Density (PHD) filter for linear system in which initial state, process and measurement noises are only known to be bounded (they can vary on compact sets, e.g., polytopes). This means that no probabilistic assumption is imposed on the distributions of initial state and noises besides the knowledge of their supports. These are the same assumptions that are used in set-membership estimation. By exploiting a formulation of set-membership estimation in terms of set of probability measures, we derive the equations of the set-membership PHD filter, which consist in propagating in time compact sets that include with guarantee the targets' states. Numerical simulations show the effectiveness of the proposed approach and the comparison with a sequential Monte Carlo PHD filter which instead assumes that initial state and noises have uniform distributions.
机译:本文提出了一种用于线性系统的新型概率假定密度(PHD)滤波器,其中初始状态,过程和测量噪声仅被称为有界(它们可以在紧凑的组上变化,例如,多核)。这意味着除了他们支持的知识之外,没有对初始状态的分布和噪声的分布没有概率的假设。这些是在设定隶属估计中使用的假设。通过利用在概率测量方面的集合估计的制定中,我们导出了集合员资格PHD滤波器的等式,该滤波器包括在时间紧凑型集中传播,该组件包括保证目标状态。数值模拟显示了所提出的方法的有效性以及与顺序蒙特卡罗博物馆滤波器的比较,这使得初始状态和噪声具有均匀的分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号