首页> 外文会议>IEEE International Conference on Nanotechnology >17 An HDL Model of Magnetic Quantum-Dot Cellular Automata Devices and Circuits
【24h】

17 An HDL Model of Magnetic Quantum-Dot Cellular Automata Devices and Circuits

机译:17磁量子点蜂窝自动机设备和电路的HDL模型

获取原文
获取外文期刊封面目录资料

摘要

Among the disparate emerging technologies that have been proposed to overcome the limitations of "end-of-the-roadmap" CMOS (complementary metal–oxide–semiconductor), quantum-dot cellular automata (QCA) shows promising features to achieve both high computational throughput and lowpower dissipation. The QCA computational paradigm [1,2] introduces highly pipelined architectures with extremely high speed (of the order of THz), while radically departing from the switch-based operation of CMOS. QCA manufacturability has been demonstrated both for metal-dot QCA [3] and molecular scale allowing room temperature operation. Recently, magnetic QCA (MQCA) based on Co nanomagnets has been analyzed [4–8]. The use of nanomagnets is very attractive because MQCA can operate at room temperature, and has been shown to be easier than the molecular implementation of an electrostatic QCA. Moreover, MQCA can also be integrated with other emerging technologies such as magnetic RAM for memory design. The clocking mechanism of MQCA is similar to electrostatic QCA; the use of abrupt switching in electrostatic QCA is unreliable [2] due to the possible generation of metastable states, so a quasi-adiabatic clocking scheme has been proposed to overcome the kink probability in QCA circuits [2]. For MQCA, a three-phase snake clock has also been proposed [9]. Finally, a technology-based solution has been proposed in Ref. [7] to stabilize the magnetization state of nanomagnets by adding biaxial anisotropy. This arrangement modifies the framework in which MQCA circuits can be designed, thus requiring further investigation into mechanisms (also at circuit level) to leverage the newly introduced functionalities.
机译:在已经提出克服“路线图”CMOS(互补金属 - 氧化物半导体)的局限性的不同新兴技术中,量子点蜂窝自动机(QCA)显示了实现高计算吞吐量的有希望的特征和低功耗。 QCA计算范式[1,2]引入高度流水线的架构,具有极高的速度(THz的顺序),同时从基于交换机的CMOS的操作进行了彻底脱离。 QCA可制造性已经证明金属点QCA [3]和分子尺度允许室温操作。最近,已经分析了基于CO Nanomagnet的磁性QCA(MQCA)[4-8]。纳米磁珠的使用非常有吸引力,因为MQCA可以在室温下运行,并且已被证明比静电QCA的分子实现更容易。此外,MQCA还可以与其他新兴技术集成,例如用于存储器设计的磁RAM。 MQCA的时钟机构类似于静电QCA;由于可能产生亚稳态状态,因此提出了一种静电QCA在静电QCA中的使用是不可靠的[2],因此提出了一种准防热时钟方案来克服QCA电路中的扭结概率[2]。对于MQCA,也提出了一种三相蛇时钟[9]。最后,参考文献提出了一种基于技术的解决方案。 [7]通过添加双轴各向异性来稳定纳米磁性的磁化状态。这种布置改变了可以设计MQCA电路的框架,从而需要进一步研究机制(也在电路电平)中以利用新引入的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号