首页> 外文会议>International Workshop on Junction Technology >Advanced Plasma Doping Technique for USJ
【24h】

Advanced Plasma Doping Technique for USJ

机译:USJ的先进等离子体掺杂技术

获取原文

摘要

Fabrication of advanced Logic CMOS devices calls for doping solutions to address requirements for increasingly shallow and abrupt junctions, while maintaining high dopant activation to meet series resistance requirements. VIISta PLAD which has already been adopted in high volume manufacturing in the ultra high dose, low energy regime for advanced DRAM technology nodes, is now being investigated for source drain extension (SDE) implants, where precise and repeatable dopant placement is critical for maintaining control over device parameters. In this article, we investigate the process performance of SDE implants carried out in a VIISta PLAD system using both p- and n-type dopant precursors. Key metrics, such as junction depth, profile abruptness, series resistance, and leakage are reported for as-implanted, as well as samples processed with advanced anneal techniques. The advanced control features in the PLAD system are critical in enabling the process performance required for SDE implants. The intrinsic electrical properties of a field effect transistor are fundamentally dictated by the distribution of electrically active dopants and damage. The concentration of active dopant sets device speed, while junction depth dictates short channel effects. Overlap capacitance, which affects both device speed and power consumption, is determined by dopant distribution in the link-up region [1,2]. With increasingly stringent demands for maximum speed and minimum power consumption at each technology node, increasingly shallow and abrupt source drain extension (SDE) implants, with increasing doses in order to meet series resistance requirements are called for by the ITRS roadmap (Table I). Even though the ITRS guidelines for junction depth and sheet resistance for high performance logic devices have recently been relaxed [3], junctions on the order of 10nm at carrier concentrations of about 5E18 cm~(-3) with sheet resistance values of less than 1000 Ohm/square, and abruptness of less than 2nm/decade will be required soon.
机译:高级逻辑CMOS器件的制作要求掺杂解决方案,以解决越来越浅且突然的交叉点的要求,同时保持高掺杂剂激活以满足串联电阻要求。现在已经在超高剂量的高卷制造中采用的Viista Plad,用于高级DRAM技术节点的低能量制度,用于源排水延长(SDE)植入物,其中精确和可重复的掺杂剂放置对于维持控制至关重要在设备参数上。在本文中,我们研究了使用P-和N型掺杂剂前体在Viiista Plad系统中进行的SDE植入物的过程性能。据报告了关键指标,例如结深,突清,串联电阻和泄漏,以及用先进的退火技术处理的样品。 Plad系统中的高级控制功能对于实现SDE植入物所需的过程性能至关重要。场效应晶体管的固有电特性基本上通过电活性掺杂剂和损坏的分布来决定。主动掺杂剂设置装置速度的浓度,而结深度决定了短信道效应。影响器件速度和功耗的重叠电容是通过链接区域中的掺杂剂分布来确定的[1,2]。随着对每个技术节点的最大速度和最小功耗的要求越来越严格,越来越浅且源漏延长(SDE)植入物,通过ITRS路线图(表I)调用了往来符合串联电阻要求的剂量增加。即使ITRS用于高性能逻辑器件的接线电阻和薄层电阻的准则最近被放宽[3],则在载体浓度为约5e18cm〜(-3)的载体浓度下的连接点,薄层电阻值小于1000欧姆/平方,很快需要突然少于2nm /十年。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号