首页> 外文会议>International conference on similarity search and applications >Evaluation of Jensen-Shannon Distance over Sparse Data
【24h】

Evaluation of Jensen-Shannon Distance over Sparse Data

机译:稀疏数据上Jensen-Shannon距离的评估

获取原文

摘要

Jensen-Shannon divergence is a symmetrised, smoothed version of Kuellback-Leibler. It has been shown to be the square of a proper distance metric, and has other properties which make it an excellent choice for many high-dimensional spaces in R*. The metric as defined is however expensive to evaluate. In sparse spaces over many dimensions the Intrinsic Dimensionality of the metric space is typically very high, making similarity-based indexing ineffectual. Exhaustive searching over large data collections may be infeasible. Using a property that allows the distance to be evaluated from only those dimensions which are non-zero in both arguments, and through the identification of a threshold function, we show that the cost of the function can be dramatically reduced.
机译:Jensen-Shannon散度是Kuellback-Leibler的对称,平滑版本。它已被证明是适当距离度量的平方,并且具有其他属性,使其成为R *中许多高维空间的绝佳选择。但是,所定义的指标评估起来很昂贵。在许多维上的稀疏空间中,度量空间的固有维数通常很高,从而使基于相似度的索引无效。穷举搜索大型数据集可能是不可行的。使用一个属性,该属性允许仅从两个参数中都不为零的维度求出距离,并通过阈值函数的标识,我们表明可以显着降低函数的成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号