首页> 外文会议>Electronic System-Integration Technology Conference >Dual-side heat removal by micro-channel cold plate and silicon-interposer with embedded fluid channels
【24h】

Dual-side heat removal by micro-channel cold plate and silicon-interposer with embedded fluid channels

机译:微通道冷板和硅插入器的双侧散热,嵌入式流体通道

获取原文

摘要

In this study, a dual-side cooling topology based on a silicon cold plate and an electrical functional silicon-interposer with embedded fluid channels is benchmarked against mere back-side cooling. The back-side cold plate can be operated in a split-flow mode, whereas in the case of the interposer only a single in- and outlet can be implemented, which results in a cross-flow heat-exchange mode. An interposer cavity can be achieved by back-to-back bonding of interposer shells to achieve large channel heights. Sealing-ring structures and embedded TSVs are required to prevent contact between water and the electrically active TSVs. Optimal micro-channel dimensions of 150 μm width and 250 μm height were computed using an analytical convection model that considered mass and heat transfer. The impact of thermal interfaces arising from the electrical interconnects between the chip stack and the interposer was studied by numerical heat-conduction modeling. Neither, the interconnect type, rail or pillar, nor the application of thermally conductive underfills did result in significant changes in junction temperature. However, the dual-side cooling approach resulted in twice lower thermal gradients at the inlet of the cavity than with the back-side or front-side cooling option only. Although the cross-flow mode of the interposer increases the coolant temperature more than the cold plate, dual-side cooling extends the power dissipation limit for single dies and chip stacks substantially, supporting performance and efficiency scaling.
机译:在该研究中,基于硅冷板的双侧冷却拓扑和具有嵌入式流体通道的电功能硅插入器的基准反对仅对后侧冷却。背面冷板可以在分流模式下操作,而在插入器的情况下,只能实现单个插入,这导致横流热交换模式。插入器腔可以通过插入器壳的背靠背键合来实现大的通道高度。密封环结构和嵌入式TSV是防止水和电活性TSV之间的接触。使用考虑质量和传热的分析对流模型计算最佳微通道尺寸和250μm高度。通过数值热传导建模研究了从芯片堆叠和插入器之间的电互连产生的热界面的影响。互连类型,轨道或支柱,也不是导热底部填充物的应用确实导致结温的显着变化。然而,双侧冷却方法产生的腔入口处的较低热梯度,而不是仅与背面或前侧冷却选项的入口处。虽然插入器的横流模式增加了冷板的冷却剂温度,但是双侧冷却基本上基本上延伸了单一模具和芯片堆叠的功率耗散极限,支持性能和效率缩放。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号