首页> 外文会议>AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition >Magneto-hydrodynamics simulation study of high-density plasmas in electromagnetic guns
【24h】

Magneto-hydrodynamics simulation study of high-density plasmas in electromagnetic guns

机译:电磁枪中高密度等离子体的磁流体动力学模拟研究

获取原文

摘要

Electromagnetic plasma guns use Lorentz forces to accelerate high density plasmas to velocities ~km/s. This concept has been used widely in space propulsion systems and in thermonuclear fusion devices. One of the important factors that influence the performance of these devices is the interaction of the high density plasma with the bounding solid surfaces. We perform a numerical modeling study of the plasma in an electromagnetic gun to understand the discharge physics and in particular study the plasma-surface interactions. We use the resistive Magneto hydrodynamics (MHD) equations which include the mass, momentum and energy equations for a conducting fluid along with the Maxwell's equations to study the plasma phenomenon in these devices. The equations are solved on an unstructured mesh using a cell-centered finite volume formulation. Simulations are performed on the operation of a generic plasma accelerator in the plasma detonation mode with current inputs ~ 400-1200 kA/m. Results obtained reveal the formation of a current sheet that propagates from the breech to the muzzle. It is also seen that the viscous shear stresses and thermal fluxes at the electrodes are dominant in the region of the current sheet. The time averaged viscous drag acting on the plasma is seen to increase rapidly with the current input.
机译:电磁等离子枪利用洛伦兹力将高密度等离子加速至约km / s的速度。该概念已广泛用于空间推进系统和热核聚变设备中。影响这些设备性能的重要因素之一是高密度等离子体与边界固体表面的相互作用。我们对电磁枪中的等离子体进行了数值建模研究,以了解放电物理学,尤其是研究等离子体与表面的相互作用。我们使用电阻磁流体力学(MHD)方程(包括导电流体的质量,动量和能量方程)以及麦克斯韦方程,来研究这些设备中的等离子体现象。使用以单元为中心的有限体积公式,可以在非结构化网格上求解方程。在等离子爆轰模式下,电流输入约为400-1200 kA / m的情况下,对通用等离子加速器的操作进行了仿真。获得的结果揭示了从后膛向枪口传播的电流板的形成。还可以看到,在电流板的区域中,电极处的粘性剪切应力和热通量占主导地位。可以看到,平均时间作用在等离子体上的粘滞阻力随电流输入而迅速增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号