【24h】

Distance Metric Learning under Covariate Shift

机译:协变量移位下的距离度量学习

获取原文

摘要

Learning distance metrics is a fundamental problem in machine learning. Previous distance-metric learning research assumes that the training and test data are drawn from the same distribution, which may be violated in practical applications. When the distributions differ, a situation referred to as covariate shift, the metric learned from training data may not work well on the test data. In this case the metric is said to be inconsistent. In this paper, we address this problem by proposing a novel metric learning framework known as consistent distance metric learning (CDML), which solves the problem under covariate shift situations. We theoretically analyze the conditions when the metrics learned under covariate shift are consistent. Based on the analysis, a convex optimization problem is proposed to deal with the CDML problem. An importance sampling method is proposed for metric learning and two importance weighting strategies are proposed and compared in this work. Experiments are carried out on synthetic and real world datasets to show the effectiveness of the proposed method.
机译:学习距离度量是机器学习中的一个基本问题。以前的距离度量学习研究假设训练和测试数据来自同一分布,这在实际应用中可能会被违反。当分布不同时(一种称为协变量偏移的情况),从训练数据中学到的指标可能无法在测试数据上很好地工作。在这种情况下,度量标准被认为是不一致的。在本文中,我们通过提出一种称为一致性距离度量学习(CDML)的新颖的度量学习框架来解决此问题,该框架解决了协变量变速情况下的问题。我们在理论上分析了当在协变量平移下获得的指标一致时的情况。在分析的基础上,提出了凸优化问题来处理CDML问题。提出了一种用于度量学习的重要性采样方法,并提出了两种重要性加权策略,并在此工作中进行了比较。在合成和真实数据集上进行了实验,以证明该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号