首页> 外文期刊>Machine Learning >Fast generalization rates for distance metric learning: Improved theoretical analysis for smooth strongly convex distance metric learning
【24h】

Fast generalization rates for distance metric learning: Improved theoretical analysis for smooth strongly convex distance metric learning

机译:距离度量学习的快速泛化率:改进的理论分析,用于平滑强凸距离度量学习

获取原文
获取原文并翻译 | 示例
       

摘要

Distance metric learning(DML) aims to find a suitable measure to compute a distance between instances. Facilitated by side information, the learned metric can often improve the performance of similarity or distance based methods such as kNN. Theoretical analyses of DML focus on the learning effectiveness for squared Mahalanobis distance. Specifically, whether the Mahalanobis metric learned from the empirically sampled pairwise constraints is in accordance with the optimal metric optimized over the paired samples generated from the true distribution, and the sample complexity of this process. The excess risk could measure the quality of the generalization, i.e., the gap between the expected objective of empirical metric learned from a regularized objective with convex loss function and the one with the optimal metric. Given N training examples, existing analyses over this non-i.i.d. learning problem have proved the excess risk of DML converges to zero at a rate of O) open. In this paper, we obtain a faster convergence rate of DML, when learning the distance metric with a smooth loss function and a strongly convex objective. In addition, when the problem is relatively easy, and the number of training samples is large enough, this rate can be further improved to. Synthetic experiments validate that DML can achieve the specified faster generalization rate, and results under various settings help explore the theoretical properties of DML a lot.
机译:距离度量学习(DML)旨在找到一种合适的度量来计算实例之间的距离。在附带信息的帮助下,学习的指标通常可以提高类似度或基于距离的方法(如kNN)的性能。 DML的理论分析侧重于平方马氏距离的学习效果。具体而言,从经验采样的成对约束条件获知的Mahalanobis度量是否符合对根据真实分布生成的成对样本进行优化的最佳度量,以及该过程的样本复杂度。超额风险可以衡量概括的质量,即从具有凸损失函数的正则化目标学到的经验指标的预期目标与具有最优指标的经验指标之间的差距。给定N个训练示例,此非i.d.的现有分析学习问题已证明DML的额外风险以O)开放的速率收敛到零。在本文中,当学习具有光滑损失函数和强凸目标的距离度量时,我们可以获得更快的DML收敛速度。另外,当问题相对容易并且训练样本的数量足够大时,可以将该比率进一步提高到。合成实验证明DML可以达到指定的更快的泛化率,并且在各种设置下的结果有助于大量探索DML的理论特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号