【24h】

Learning to Rank with Cross Entropy

机译:学习与交叉熵排名

获取原文

摘要

Learning to rank algorithms are usually grouped into three types: the point wise approach, the pairwise approach, and the listwise approach, according to the input spaces. Much of the prior work is based on the three approaches to learn the ranking model to predict the relevance of a document to a query. In this paper, we focus on the problem of constructing new input space based on groups of documents with the same relevance judgment. A novel approach is proposed based on cross entropy to improve the existing ranking method. The experimental results show that our approach leads to significant improvements in retrieval effectiveness.
机译:根据输入空间,学习算法通常分为三种类型:点明智的方法,成对方法,以及ListWise方法。事先工作的大部分方法基于三种方法来学习排名模型,以预测文档对查询的相关性。在本文中,我们专注于基于具有相同相关性判断的文档组构建新输入空间的问题。基于交叉熵提出了一种新的方法,以改善现有的排名方法。实验结果表明,我们的方法导致检索效率的显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号