【24h】

Comparison of Experimental and Computational Ship Air Wakes for YP Class Patrol Craft

机译:YP级巡逻艇的实验和计算船空气尾流的比较

获取原文

摘要

This paper provides current results of a multi-year research project that involves the systematic investigation of ship air wakes using an instrumented United States Naval Academy (USNA) YP (Patrol Craft, Training). The objective is to validate and improve Computational Fluid Dynamics (CFD) tools that will be useful in determining ship air wake impact on naval rotary wing vehicles. This project is funded by the Office of Naval Research and includes extensive coordination with Naval Air Systems Command. Currently, ship launch and recovery wind limits and envelopes for helicopters are primarily determined through at-sea in situ flight testing that is expensive and frequently difficult to schedule and complete. The time consuming and potentially risky flight testing is required, in part, because computational tools are not mature enough to adequately predict air flow and wake data in the lee of a ship with a complex superstructure. The top-side configuration of USNA YPs is similar to that of a destroyer or cruiser, and their size (length of 108 ft and above waterline height of 24 ft) allows for collection of air wake data with a Reynolds number that is the same order of magnitude as that of modern naval warships, an important consideration in aerodynamic modeling. A dedicated YP has been modified to add a flight deck and hangar-like structure to produce an air wake similar to that on a modern destroyer. Three-axis acoustic anemometers, fog generators and an inertia) measurement unit have been installed. Repeated testing on the modified YP is being conducted in the Chesapeake Bay, which allows for the collection of data over a wide range of wind conditions. Additionally, a 4% scale model of the modified YP has been constructed and tested in the 42x60x120 inch USNA wind tunnel. Comparison of YP in situ data with similar data from wind tunnel testing and CFD simulations shows reasonable agreement for a headwind condition and for a relative wind 15° off the starboard bow. Analysis of in situ data and wind tunnel data for a 30° relative wind also show reasonable agreement, though with a greater deviation than in the 15° relative wind condition. Furthermore, analysis indicates that CFD simulations require modeling the velocity profile in the atmospheric boundary layer to improve simulation accuracy.
机译:本文提供了一个多年研究项目的当前结果,该项目涉及使用仪器化的美国海军学院(USNA)YP(巡逻艇训练)对舰船尾流进行系统研究。目的是验证和改进计算流体动力学(CFD)工具,这些工具将有助于确定船舶空气尾流对海军旋转翼飞机的影响。该项目由海军研究办公室资助,包括与海军航空系统司令部的广泛协调。当前,直升机的船舶发射和恢复风的极限和包络线主要是通过海上原位飞行测试来确定的,这很昂贵,而且常常难以安排和完成。之所以需要进行耗时且具有潜在风险的飞行测试,部分原因是因为计算工具还不够成熟,不足以充分预测复杂上层建筑的船身中的气流和尾流数据。 USNA YP的顶部配置类似于驱逐舰或巡洋舰,并且其尺寸(长度为108英尺且水线高度为24英尺以上)允许以雷诺数相同的顺序收集空中唤醒数据规模与现代海军战舰相当,是空气动力学建模中的重要考虑因素。专门的YP进行了修改,增加了驾驶舱和类似机库的结构,以产生类似于现代驱逐舰上的空中尾迹。已安装三轴声风速计,雾发生器和惯性测量单元。切萨皮克湾正在对改进的YP进行重复测试,从而可以在广泛的风况下收集数据。此外,已在42x60x120英寸USNA风洞中构建并测试了经过修改的YP的4%比例模型。 YP原位数据与风洞测试和CFD模拟得到的类似数据的比较表明,对于逆风条件和相对于右舷船首15°的相对风而言,是合理的协议。对30°相对风的原位数据和风洞数据的分析也显示出合理的一致性,尽管与15°相对风条件下的偏差更大。此外,分析表明,CFD仿真需要对大气边界层中的速度分布进行建模,以提高仿真精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号